Bingbing Chen, Zhijun Liang, Yao Gong, Wei Wu, Jiaen Huang, Jiaxi Chen, Yanmei Wang, Jun Mei, Rui Chen, Zunnan Huang, Jing Sun
{"title":"Mitochondrial viscosity probes: iridium(III) complexes induce apoptosis in HeLa cells.","authors":"Bingbing Chen, Zhijun Liang, Yao Gong, Wei Wu, Jiaen Huang, Jiaxi Chen, Yanmei Wang, Jun Mei, Rui Chen, Zunnan Huang, Jing Sun","doi":"10.1002/cbic.202400756","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial viscosity has emerged as a promising biomarker for diseases such as cancer and neurodegenerative disorders, yet accurately measuring viscosity at the subcellular level remains a significant challenge. In this study, we synthesized and characterized three cyclometalated iridium(III) complexes (Ir1-Ir3) containing 5-fluorouracil derivatives as ligands. Among these, Ir1 selectively induced apoptosis in HeLa cells by increasing mitochondrial production of reactive oxygen species (ROS), which triggered a cascade of events leading to mitochondrial dysfunction. Additionally, the fluorescence lifetime of Ir1 demonstrated high sensitivity to intracellular viscosity changes, enabling real-time fluorescence lifetime imaging microscopy (FLIM) of cellular micro-viscosity during apoptosis. These findings underscore the potential of cyclometalated Ir(III) complexes for both therapeutic and diagnostic applications at the subcellular level.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial viscosity has emerged as a promising biomarker for diseases such as cancer and neurodegenerative disorders, yet accurately measuring viscosity at the subcellular level remains a significant challenge. In this study, we synthesized and characterized three cyclometalated iridium(III) complexes (Ir1-Ir3) containing 5-fluorouracil derivatives as ligands. Among these, Ir1 selectively induced apoptosis in HeLa cells by increasing mitochondrial production of reactive oxygen species (ROS), which triggered a cascade of events leading to mitochondrial dysfunction. Additionally, the fluorescence lifetime of Ir1 demonstrated high sensitivity to intracellular viscosity changes, enabling real-time fluorescence lifetime imaging microscopy (FLIM) of cellular micro-viscosity during apoptosis. These findings underscore the potential of cyclometalated Ir(III) complexes for both therapeutic and diagnostic applications at the subcellular level.