Chao Pan , Shujuan Yu , Caixia Li , Juntao Li , Peng Sun , Yan Guo , Ting Li , Dongshu Wang , Kangfeng Wang , Yufei Lyu , Xiankai Liu , Xiang Li , Jun Wu , Li Zhu , Hengliang Wang
{"title":"Rapid and efficient immune response induced by a designed modular cholera toxin B subunit (CTB)-based self-assembling nanoparticle","authors":"Chao Pan , Shujuan Yu , Caixia Li , Juntao Li , Peng Sun , Yan Guo , Ting Li , Dongshu Wang , Kangfeng Wang , Yufei Lyu , Xiankai Liu , Xiang Li , Jun Wu , Li Zhu , Hengliang Wang","doi":"10.1016/j.biomaterials.2024.122946","DOIUrl":null,"url":null,"abstract":"<div><div>Modular self-assembling nanoparticle vaccines, represent a cutting-edge approach in immunology with the potential to revolutionize vaccine design and efficacy. Although many innovative efficient modular self-assembling nanoparticles have been designed for vaccination, the immune activation characteristics underlying such strong protection remain poorly understood, limiting the further expansion of such nanocarrier. Here, we prepared a novel modular nanovaccine, which self-assembled via a pentamer cholera toxin B subunit (CTB) domain and an unnatural trimer domain, presenting <em>S.</em> Paratyphi A O-polysaccharide antigen, and investigated its rapid immune activation mechanism. The nanovaccine efficiently targets draining lymph nodes and antigen-presenting cells, facilitating co-localization with Golgi and endoplasmic reticulum. In addition, dendritic cells, macrophages, B cells, and neutrophils potentially participate in antigen presentation, unveiling a dynamic change of the vaccines in lymph nodes. Single-cell RNA sequencing at early stage and <em>i</em>N <em>vivo</em>/<em>i</em>N <em>vitro</em> experiments reveal its potent humoral immune response capabilities and protection effects. This nanoparticle outperforms traditional CTB carriers in eliciting robust prophylactic effects in various infection models. This work not only provides a promising and efficient candidate vaccine, but also promotes the design and application of the new type of self-assembled nanoparticle, offering a safe and promising vaccination strategy for infection diseases.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"315 ","pages":"Article 122946"},"PeriodicalIF":12.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961224004812","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Modular self-assembling nanoparticle vaccines, represent a cutting-edge approach in immunology with the potential to revolutionize vaccine design and efficacy. Although many innovative efficient modular self-assembling nanoparticles have been designed for vaccination, the immune activation characteristics underlying such strong protection remain poorly understood, limiting the further expansion of such nanocarrier. Here, we prepared a novel modular nanovaccine, which self-assembled via a pentamer cholera toxin B subunit (CTB) domain and an unnatural trimer domain, presenting S. Paratyphi A O-polysaccharide antigen, and investigated its rapid immune activation mechanism. The nanovaccine efficiently targets draining lymph nodes and antigen-presenting cells, facilitating co-localization with Golgi and endoplasmic reticulum. In addition, dendritic cells, macrophages, B cells, and neutrophils potentially participate in antigen presentation, unveiling a dynamic change of the vaccines in lymph nodes. Single-cell RNA sequencing at early stage and iN vivo/iN vitro experiments reveal its potent humoral immune response capabilities and protection effects. This nanoparticle outperforms traditional CTB carriers in eliciting robust prophylactic effects in various infection models. This work not only provides a promising and efficient candidate vaccine, but also promotes the design and application of the new type of self-assembled nanoparticle, offering a safe and promising vaccination strategy for infection diseases.
模块化自组装纳米粒子疫苗是免疫学的前沿方法,有可能彻底改变疫苗的设计和功效。尽管已经设计出了许多创新的高效模块化自组装纳米颗粒用于疫苗接种,但人们对这种强保护性所依赖的免疫激活特性仍然知之甚少,从而限制了这种纳米载体的进一步推广。在此,我们制备了一种新型模块化纳米疫苗,它通过五聚体霍乱毒素 B 亚基(CTB)结构域和非天然三聚体结构域自组装,呈现副伤寒甲型流感杆菌 O 型多糖抗原,并研究了其快速免疫激活机制。该纳米疫苗可有效靶向引流淋巴结和抗原递呈细胞,促进与高尔基体和内质网的共定位。此外,树突状细胞、巨噬细胞、B 细胞和中性粒细胞也可能参与抗原呈递,从而揭示了疫苗在淋巴结中的动态变化。早期的单细胞 RNA 测序和体内/体外实验揭示了其强大的体液免疫反应能力和保护效果。在各种感染模型中,这种纳米粒子在激发强大的预防效果方面优于传统的 CTB 载体。这项工作不仅提供了一种有前景的高效候选疫苗,而且促进了新型自组装纳米粒子的设计和应用,为感染性疾病提供了一种安全、有前景的疫苗接种策略。
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.