From Optical Fiber Communications to Bioimaging: Wavelength Division Multiplexing Technology for Simplified in vivo Large-depth NIR-IIb Fluorescence Confocal Microscopy.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xuanjie Mou, Tianxiang Wu, Yunlong Zhao, Mubin He, Yalun Wang, Mingxi Zhang, Jun Qian
{"title":"From Optical Fiber Communications to Bioimaging: Wavelength Division Multiplexing Technology for Simplified in vivo Large-depth NIR-IIb Fluorescence Confocal Microscopy.","authors":"Xuanjie Mou, Tianxiang Wu, Yunlong Zhao, Mubin He, Yalun Wang, Mingxi Zhang, Jun Qian","doi":"10.1002/smtd.202401426","DOIUrl":null,"url":null,"abstract":"<p><p>Near-infrared II (NIR-II, 900-1880 nm) fluorescence confocal microscopy offers high spatial resolution and extensive in vivo imaging capabilities. However, conventional confocal microscopy requires precise pinhole positioning, posing challenges due to the small size of the pinhole and invisible NIR-II fluorescence. To simplify this, a fiber optical wavelength division multiplexer (WDM) replaces dichroic mirrors and traditional pinholes for excitation and fluorescence beams, allowing NIR-IIb (1500-1700 nm) fluorescence and excitation light to be coupled into the same optical fiber. This streamlined system seamlessly integrates key components-excitation light, detector, and scanning microscopy-via optical fibers. Compared to traditional NIR-II confocal systems, the fiber optical WDM configuration offers simplicity and ease of adjustment. Notably, this simplified system successfully achieves optical sectioning imaging of mouse cerebral blood vessels up to 1000 µm in depth. It can discern tiny blood vessels (diameter: 4.57 µm) at 800 µm depth with a signal-to-background ratio (SBR) of 5.34. Additionally, it clearly visualizes liver vessels, which are typically challenging to image, down to a depth of 300 µm.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401426"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401426","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Near-infrared II (NIR-II, 900-1880 nm) fluorescence confocal microscopy offers high spatial resolution and extensive in vivo imaging capabilities. However, conventional confocal microscopy requires precise pinhole positioning, posing challenges due to the small size of the pinhole and invisible NIR-II fluorescence. To simplify this, a fiber optical wavelength division multiplexer (WDM) replaces dichroic mirrors and traditional pinholes for excitation and fluorescence beams, allowing NIR-IIb (1500-1700 nm) fluorescence and excitation light to be coupled into the same optical fiber. This streamlined system seamlessly integrates key components-excitation light, detector, and scanning microscopy-via optical fibers. Compared to traditional NIR-II confocal systems, the fiber optical WDM configuration offers simplicity and ease of adjustment. Notably, this simplified system successfully achieves optical sectioning imaging of mouse cerebral blood vessels up to 1000 µm in depth. It can discern tiny blood vessels (diameter: 4.57 µm) at 800 µm depth with a signal-to-background ratio (SBR) of 5.34. Additionally, it clearly visualizes liver vessels, which are typically challenging to image, down to a depth of 300 µm.

从光纤通信到生物成像:用于简化体内大深度近红外-IIb 荧光共聚焦显微镜的波分复用技术。
近红外 II(NIR-II,900-1880 纳米)荧光共聚焦显微镜具有高空间分辨率和广泛的活体成像能力。然而,传统的共聚焦显微镜需要精确的针孔定位,由于针孔尺寸较小,且近红外 II 荧光不可见,这给共聚焦显微镜带来了挑战。为了简化这一过程,光纤波分复用器(WDM)取代了激发光和荧光光束的二向色镜和传统针孔,使近红外-IIb(1500-1700 nm)荧光和激发光耦合到同一根光纤中。这种精简的系统通过光纤将激发光、检测器和扫描显微镜等关键部件无缝集成在一起。与传统的近红外 II 共聚焦系统相比,光纤波分复用器配置简单,易于调整。值得注意的是,这一简化系统成功实现了深度达 1000 微米的小鼠脑血管光学切片成像。它能辨别 800 微米深度的微小血管(直径:4.57 微米),信噪比(SBR)为 5.34。此外,它还能清晰地显示肝脏血管,而肝脏血管的成像深度通常很难达到 300 微米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信