Xiafei Gao, Yuping Pan, Janghui Qiu, Juan Peng, Shuangyin Wang, Yuqin Zou
{"title":"Enhancing the Stability of Cu-Based Electrocatalyst via Fe Alloy in Electrocatalytic Formaldehyde Oxidation with Long Durability","authors":"Xiafei Gao, Yuping Pan, Janghui Qiu, Juan Peng, Shuangyin Wang, Yuqin Zou","doi":"10.1002/adfm.202417545","DOIUrl":null,"url":null,"abstract":"Electrocatalytic formaldehyde oxidation with metal Cu electrocatalyst has attracted significant interest since it can produce H<sub>2</sub> at the anode and make it possible to construct a bipolar hydrogen production cell with low voltage. However, the activity of the Cu electrocatalyst will be greatly weakened after oxidizing it to Cu<sup>+</sup> or Cu<sup>2+</sup>. Here, a CuFe bimetallic catalyst is developed to efficiently catalyze the electro-oxidation process of HCHO to produce H<sub>2</sub> at a potential of 0.10 V<sub>RHE</sub> with a current density of 100 mA cm<sup>−2</sup>. It is confirmed that introducing Fe in a CuFe catalyst can regulate the electron configuration to prevent Cu<sup>0</sup> oxidation and improve the stability of the catalysts. The introduction of Fe can reduce the energy barrier of the reaction process, and make the C─H bond more easily split on CuFe. A bipolar hydrogen production device is constructed by combining the anodic oxidation of HCHO with the cathodic hydrogen evolution. The current density of 500 mA cm<sup>−2</sup> is achieved at a cell voltage of 0.6 V. The faradaic efficiency is ≈100% and the device is stable for ≈50 h. The research provides a promising path toward the secure, effective, and expandable generation of high-purity H<sub>2</sub> at both anodic and cathodic electrodes.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"12 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202417545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocatalytic formaldehyde oxidation with metal Cu electrocatalyst has attracted significant interest since it can produce H2 at the anode and make it possible to construct a bipolar hydrogen production cell with low voltage. However, the activity of the Cu electrocatalyst will be greatly weakened after oxidizing it to Cu+ or Cu2+. Here, a CuFe bimetallic catalyst is developed to efficiently catalyze the electro-oxidation process of HCHO to produce H2 at a potential of 0.10 VRHE with a current density of 100 mA cm−2. It is confirmed that introducing Fe in a CuFe catalyst can regulate the electron configuration to prevent Cu0 oxidation and improve the stability of the catalysts. The introduction of Fe can reduce the energy barrier of the reaction process, and make the C─H bond more easily split on CuFe. A bipolar hydrogen production device is constructed by combining the anodic oxidation of HCHO with the cathodic hydrogen evolution. The current density of 500 mA cm−2 is achieved at a cell voltage of 0.6 V. The faradaic efficiency is ≈100% and the device is stable for ≈50 h. The research provides a promising path toward the secure, effective, and expandable generation of high-purity H2 at both anodic and cathodic electrodes.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.