Soundarya Nagarajan, Ingmar Ratschinski, Stefan Schmult, Steffen Wirth, Dirk König, Thomas Mikolajick, Daniel Hiller, Jens Trommer
{"title":"Analyzing Carrier Density and Hall Mobility in Impurity-Free Silicon Virtually Doped by External Defect Placement","authors":"Soundarya Nagarajan, Ingmar Ratschinski, Stefan Schmult, Steffen Wirth, Dirk König, Thomas Mikolajick, Daniel Hiller, Jens Trommer","doi":"10.1002/adfm.202415230","DOIUrl":null,"url":null,"abstract":"Impurity doping at the nanoscale for silicon is becoming less efficient with conventional techniques. Here, an alternative virtual doping method is presented for silicon that can achieve an equivalent carrier density while addressing the primary limitations of traditional doping methods. The doping for silicon is carried out by placing aluminum-induced acceptor states externally in a silicon dioxide dielectric shell. This technique can be referred to as direct modulation doping. The resistivity, carrier density, and mobility are investigated by Hall effect measurements to characterize the carrier transport using the new doping method. The results thereof are compared with carrier transport analysis of conventionally doped silicon at room-temperature, demonstrating a 100% increase in carrier mobility at equal carrier density. The sheet density of hole carriers in silicon due to modulation doping remains nearly constant, ≈4.7 × 10<sup>12</sup> cm<sup>−2</sup> over a wide temperature range from 300 down to 2 K, proving that modulation-doped devices do not undergo carrier freeze-out at cryogenic temperatures. In addition, a mobility enhancement is demonstrated with an increase from 89 cm<sup>2</sup> Vs<sup>−1</sup> at 300 K to 227 cm<sup>2</sup> Vs<sup>−1</sup> at 10 K, highlighting the benefits of the new method for creating emerging nanoscale electronic devices or peripheral cryo-electronics to quantum computing.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"3 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202415230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Impurity doping at the nanoscale for silicon is becoming less efficient with conventional techniques. Here, an alternative virtual doping method is presented for silicon that can achieve an equivalent carrier density while addressing the primary limitations of traditional doping methods. The doping for silicon is carried out by placing aluminum-induced acceptor states externally in a silicon dioxide dielectric shell. This technique can be referred to as direct modulation doping. The resistivity, carrier density, and mobility are investigated by Hall effect measurements to characterize the carrier transport using the new doping method. The results thereof are compared with carrier transport analysis of conventionally doped silicon at room-temperature, demonstrating a 100% increase in carrier mobility at equal carrier density. The sheet density of hole carriers in silicon due to modulation doping remains nearly constant, ≈4.7 × 1012 cm−2 over a wide temperature range from 300 down to 2 K, proving that modulation-doped devices do not undergo carrier freeze-out at cryogenic temperatures. In addition, a mobility enhancement is demonstrated with an increase from 89 cm2 Vs−1 at 300 K to 227 cm2 Vs−1 at 10 K, highlighting the benefits of the new method for creating emerging nanoscale electronic devices or peripheral cryo-electronics to quantum computing.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.