{"title":"Molecular Crowding Solid Polymer Electrolytes for Lithium Metal Battery by In Situ Polymerization","authors":"Mingjie Zhou, Wei Chen, Hui Yang, Yin Hu, Tianyu Lei, Dongjiang Chen, Shuying Wang, Yagang Zhang, Jie Xiong","doi":"10.1002/aenm.202403082","DOIUrl":null,"url":null,"abstract":"Solid-state polymer electrolytes (SPEs) require high ionic conductivity and dense contact with the electrodes for high-performance lithium-metal solid-state batteries. However, massive challenges such as poor ionic migration ability, low antioxidant ability, and lithium dendrite formation still remain unresolved. These issues severely restrict its practical applications. Herein, a new type of solid-state polymer electrolyte with a molecular crowding feature is rationally designed by in situ polymerization of a precursor containing poly (ethylene glycol) diacrylate (PEGDA) and 1,2-dimethoxyethane (DME). Noticeably, the prepared SPE expands the electrochemical window to 4.7 V with a high lithium-ion transfer number of 0.55 and a superior ionic conductivity of 3.6 mS cm<sup>−1</sup> at room temperature. As a result, the lithium symmetrical batteries achieve stable cycles with more than 3000 h with no lithium dendrites at a current density of 0.5 mA cm<sup>−2</sup>. Importantly, this design provides dense contact of solid-state polymer electrolytes with the porous cathode and lithium anode, allowing the assembled winding-type solid-state pouch cells with outstanding cycling stability of 81.7% retention for more than 340 cycles at room temperature. It shows excellent adaption to widely practical technology with large-scale battery production, offering a new solution for the future development of solid-state polymer lithium-metal batteries.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"17 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403082","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solid-state polymer electrolytes (SPEs) require high ionic conductivity and dense contact with the electrodes for high-performance lithium-metal solid-state batteries. However, massive challenges such as poor ionic migration ability, low antioxidant ability, and lithium dendrite formation still remain unresolved. These issues severely restrict its practical applications. Herein, a new type of solid-state polymer electrolyte with a molecular crowding feature is rationally designed by in situ polymerization of a precursor containing poly (ethylene glycol) diacrylate (PEGDA) and 1,2-dimethoxyethane (DME). Noticeably, the prepared SPE expands the electrochemical window to 4.7 V with a high lithium-ion transfer number of 0.55 and a superior ionic conductivity of 3.6 mS cm−1 at room temperature. As a result, the lithium symmetrical batteries achieve stable cycles with more than 3000 h with no lithium dendrites at a current density of 0.5 mA cm−2. Importantly, this design provides dense contact of solid-state polymer electrolytes with the porous cathode and lithium anode, allowing the assembled winding-type solid-state pouch cells with outstanding cycling stability of 81.7% retention for more than 340 cycles at room temperature. It shows excellent adaption to widely practical technology with large-scale battery production, offering a new solution for the future development of solid-state polymer lithium-metal batteries.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.