Adit Gupta, Noah Al-Shamery, Jian Lv, Gurunathan Thangavel, Jinwoo Park, Daniel Mandler, Pooi See Lee
{"title":"Stretchable Energy Storage with Eutectic Gallium Indium Alloy","authors":"Adit Gupta, Noah Al-Shamery, Jian Lv, Gurunathan Thangavel, Jinwoo Park, Daniel Mandler, Pooi See Lee","doi":"10.1002/aenm.202403760","DOIUrl":null,"url":null,"abstract":"The integration of electronics with the human body or wearables necessitates the evolution of energy storage devices capable of seamless adaptation to the conformability of the skin and textiles. This work focuses on developing an intrinsically stretchable electrode prepared by sedimenting the liquid metal particles in a conductive stretchable matrix. The liquid metal-based electrode can be stretched to ≈900% strain, and its conductivity increases by extending to 250% and retaining its initial conductivity at 500% strain. Benefitting from these properties, the assembled all-solid-state energy storage device provides high stretchability of up to 150% strain and a capacity of 0.42 mAh cm<sup>−3</sup> at a high coulombic efficiency of 90%. The charge storage mechanism is investigated by probing the electrode/electrolyte interface, uncovering the intricate gallium-bis(trifluoromethane)sulfonimide (Ga-TFSI) complexation during electrochemical cycling through in situ Raman spectroscopy, ex situ X-ray photoelectron spectroscopy (XPS) analyses, and density functional theory (DFT) calculations. This work offers a promising avenue for the advancement of stretchable batteries.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403760","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of electronics with the human body or wearables necessitates the evolution of energy storage devices capable of seamless adaptation to the conformability of the skin and textiles. This work focuses on developing an intrinsically stretchable electrode prepared by sedimenting the liquid metal particles in a conductive stretchable matrix. The liquid metal-based electrode can be stretched to ≈900% strain, and its conductivity increases by extending to 250% and retaining its initial conductivity at 500% strain. Benefitting from these properties, the assembled all-solid-state energy storage device provides high stretchability of up to 150% strain and a capacity of 0.42 mAh cm−3 at a high coulombic efficiency of 90%. The charge storage mechanism is investigated by probing the electrode/electrolyte interface, uncovering the intricate gallium-bis(trifluoromethane)sulfonimide (Ga-TFSI) complexation during electrochemical cycling through in situ Raman spectroscopy, ex situ X-ray photoelectron spectroscopy (XPS) analyses, and density functional theory (DFT) calculations. This work offers a promising avenue for the advancement of stretchable batteries.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.