Till L. Kalkuhl, Israel Fernández, Terrance J. Hadlington
{"title":"Cooperative hydrogenation catalysis at a constrained gallylene-nickel(0) interface","authors":"Till L. Kalkuhl, Israel Fernández, Terrance J. Hadlington","doi":"10.1016/j.chempr.2024.10.016","DOIUrl":null,"url":null,"abstract":"The discovery of unique mechanisms in 3<em>d</em> metal catalysis is of paramount importance in utilizing these Earth-abundant metals in place of scarce precious metals. Inspired by the Horiuti-Polanyi mechanism at play in heterogeneous hydrogenation catalysts, we describe a bimetallic molecular catalyst that can selectively semi-hydrogenate alkynes via a ligand-to-substrate hydride transfer mechanism. This mimics established heterogeneous mechanisms in which remote surface-bound hydride ligands undergo a similar reactive process. This is achieved through the development of a chelate-constrained gallium(I) ligand, which operates in concert with nickel(0) to (reversibly) cleave H<sub>2</sub>, generating a [GaNi] 1,2-dihydride complex that is found to be the resting state in the catalytic process. This discovery takes steps toward utilizing non-innocent low-valent group 13 centers in effective cooperative catalysis, opening new mechanistic pathways that may aid in employing Earth-abundant metals in key catalytic transformations.","PeriodicalId":268,"journal":{"name":"Chem","volume":"163 11 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.10.016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The discovery of unique mechanisms in 3d metal catalysis is of paramount importance in utilizing these Earth-abundant metals in place of scarce precious metals. Inspired by the Horiuti-Polanyi mechanism at play in heterogeneous hydrogenation catalysts, we describe a bimetallic molecular catalyst that can selectively semi-hydrogenate alkynes via a ligand-to-substrate hydride transfer mechanism. This mimics established heterogeneous mechanisms in which remote surface-bound hydride ligands undergo a similar reactive process. This is achieved through the development of a chelate-constrained gallium(I) ligand, which operates in concert with nickel(0) to (reversibly) cleave H2, generating a [GaNi] 1,2-dihydride complex that is found to be the resting state in the catalytic process. This discovery takes steps toward utilizing non-innocent low-valent group 13 centers in effective cooperative catalysis, opening new mechanistic pathways that may aid in employing Earth-abundant metals in key catalytic transformations.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.