{"title":"Opto-Electrical Decoupled Phototransistor for Starlight Detection","authors":"Shaoyuan Zhou, Xinyue Zhang, Ying Wang, Dongyi Lin, Shoubin Zou, Jingwen Wang, Luna Xiao, Dijie Zhang, Jianhua Jiang, Panpan Zhang, Jianbing Zhang, Jiang Tang, Zhiyong Zhang","doi":"10.1002/adma.202413247","DOIUrl":null,"url":null,"abstract":"Highly sensitive shortwave infrared (SWIR) detectors are essential for detecting weak radiation (typically below 10<sup>−8</sup> W·Sr<sup>−1</sup>·cm<sup>−2</sup>·µm<sup>−1</sup>) with high-end passive image sensors. However, mainstream SWIR detection based on epitaxial photodiodes cannot effectively detect ultraweak infrared radiation due to the lack of inherent gain. Here, we develop a heterojunction-gated field-effect transistor (HGFET) consisting of a colloidal quantum dot (CQD)-based p-i-n heterojunction and a carbon nanotube (CNT) field-effect transistor, which achieves a high inherent gain based on an opto-electric decoupling mechanism for suppressing noise. The stacked heterojunction absorbs infrared radiation and separates electron–hole pairs. Then, the generated photovoltage tunes the drain current of the CNT FET through an Y<sub>2</sub>O<sub>3</sub> gate insulator. As a result, the HGFET significantly detects and amplifies SWIR signals with a high inherent gain while minimally amplifying noise, leading to a recorded specific detectivity above 10<sup>14</sup> Jones at 1300 nm and a recorded maximum gain-bandwidth product of 69.2 THz. Direct comparative testing indicates that the HGFET can detect weak infrared radiation at 0.46 nW cm<sup>−2</sup> levels; thus, compared to commercial and reported SWIR detectors, this detector is much more sensitive and enables starlight detection or vision. As the fabrication process is very compatible with CMOS readout integrated circuits, the HGFET is a promising SWIR detector for realizing passive night vision imaging sensors with high resolutions that are high-end, highly sensitive, and inexpensive.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"11 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202413247","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Highly sensitive shortwave infrared (SWIR) detectors are essential for detecting weak radiation (typically below 10−8 W·Sr−1·cm−2·µm−1) with high-end passive image sensors. However, mainstream SWIR detection based on epitaxial photodiodes cannot effectively detect ultraweak infrared radiation due to the lack of inherent gain. Here, we develop a heterojunction-gated field-effect transistor (HGFET) consisting of a colloidal quantum dot (CQD)-based p-i-n heterojunction and a carbon nanotube (CNT) field-effect transistor, which achieves a high inherent gain based on an opto-electric decoupling mechanism for suppressing noise. The stacked heterojunction absorbs infrared radiation and separates electron–hole pairs. Then, the generated photovoltage tunes the drain current of the CNT FET through an Y2O3 gate insulator. As a result, the HGFET significantly detects and amplifies SWIR signals with a high inherent gain while minimally amplifying noise, leading to a recorded specific detectivity above 1014 Jones at 1300 nm and a recorded maximum gain-bandwidth product of 69.2 THz. Direct comparative testing indicates that the HGFET can detect weak infrared radiation at 0.46 nW cm−2 levels; thus, compared to commercial and reported SWIR detectors, this detector is much more sensitive and enables starlight detection or vision. As the fabrication process is very compatible with CMOS readout integrated circuits, the HGFET is a promising SWIR detector for realizing passive night vision imaging sensors with high resolutions that are high-end, highly sensitive, and inexpensive.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.