Xiangjiao Gong, Wenkai Teng, Wei Liu, Hang Xiao, He Li, Honghui Ou, Guidong Yang
{"title":"A Sucker-Reactor Polyoxometalate Assembled Superstructures for Efficient Photocatalytic Nitrogen Fixation","authors":"Xiangjiao Gong, Wenkai Teng, Wei Liu, Hang Xiao, He Li, Honghui Ou, Guidong Yang","doi":"10.1002/adma.202412924","DOIUrl":null,"url":null,"abstract":"Designing a reaction system that integrates reactant capture and transformation in an artificial photosynthesis system to achieve high reaction efficiency remains challenging. Here, an ionic liquid (IL) -polyoxometalate (POM) superstructure photocatalyst (P2HPMo) is reported, where the anisotropy of the superstructure is allowed by adjusting the alkyl chain lengths of ILs. Experimental data and theoretical simulation show that ILs and POM serve as the “sucker” and “reactor” of the reaction system to capture and transform the reactants, respectively. In particular, the addition of quaternary phosphorous IL cations is not only conducive to the adsorption of N<sub>2</sub> but also effectively promotes the activation of N<sub>2</sub> by manipulating the energy band and electronic structure. Consequently, the synthesized P2HPMo exhibits an ammonia synthesis rate of 98 µmol·g<sub>cat</sub><sup>−1</sup>·h<sup>−1</sup>, which is one of the highest values available in a sacrificial agent-free system.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"15 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202412924","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Designing a reaction system that integrates reactant capture and transformation in an artificial photosynthesis system to achieve high reaction efficiency remains challenging. Here, an ionic liquid (IL) -polyoxometalate (POM) superstructure photocatalyst (P2HPMo) is reported, where the anisotropy of the superstructure is allowed by adjusting the alkyl chain lengths of ILs. Experimental data and theoretical simulation show that ILs and POM serve as the “sucker” and “reactor” of the reaction system to capture and transform the reactants, respectively. In particular, the addition of quaternary phosphorous IL cations is not only conducive to the adsorption of N2 but also effectively promotes the activation of N2 by manipulating the energy band and electronic structure. Consequently, the synthesized P2HPMo exhibits an ammonia synthesis rate of 98 µmol·gcat−1·h−1, which is one of the highest values available in a sacrificial agent-free system.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.