Photon-Induced Ultrafast Multitemporal Programming of Terahertz Metadevices

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jing Zhang, Jing Lou, Zhuochao Wang, Jiangang Liang, Xilai Zhao, Yindong Huang, Chao Chang, Guangwei Hu
{"title":"Photon-Induced Ultrafast Multitemporal Programming of Terahertz Metadevices","authors":"Jing Zhang, Jing Lou, Zhuochao Wang, Jiangang Liang, Xilai Zhao, Yindong Huang, Chao Chang, Guangwei Hu","doi":"10.1002/adma.202410671","DOIUrl":null,"url":null,"abstract":"Dynamic terahertz (THz) metasurface can feature modulated and multiplexed electromagnetic functionalities, important for wave-based computation, six-generation communications, and other applications. The versatile dynamic switching typically relies on a series of complex or incompatible multifield activations, with excessive system complexity, additional loss, slow modulation speed, and inertial time-varying properties, limiting more widespread applications. Here, a photon-induced ultrafast programmable THz metadevice is reoprted in time-frequency dimensions with polarization-decoupled temporal responses. By the pixelated design with multi-materials and triggering switches, the multimodal modulation transcends the constraints inherent in materials, enabling the ultrafast programmable temporal evolution. All the resonances can be independently programmed at the working band from 0.6 to 2 THz. The tri-temporal (with switching time of 1.25, 1, and 4.75 ps) and bi-temporal (with switching time of 2.25 and 4.75 ps) dynamic manipulations are performed by all-optical driven molecularization process of hybrid metasurfaces loaded with silicon (Si) and germanium (Ge) under different polarizations. Combining these features, the temporally programmed THz logic gates are last experimentally demonstrated, possessing basic operation of XNOR, NOR, and OR, as a proof-of-concept application. This reported light-driven programmable THz flat-optics allows ultrafast hybrid molecularization processes and new possibilities for miniaturized, flexible, multifunctional, and temporally programmable integrated devices.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202410671","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic terahertz (THz) metasurface can feature modulated and multiplexed electromagnetic functionalities, important for wave-based computation, six-generation communications, and other applications. The versatile dynamic switching typically relies on a series of complex or incompatible multifield activations, with excessive system complexity, additional loss, slow modulation speed, and inertial time-varying properties, limiting more widespread applications. Here, a photon-induced ultrafast programmable THz metadevice is reoprted in time-frequency dimensions with polarization-decoupled temporal responses. By the pixelated design with multi-materials and triggering switches, the multimodal modulation transcends the constraints inherent in materials, enabling the ultrafast programmable temporal evolution. All the resonances can be independently programmed at the working band from 0.6 to 2 THz. The tri-temporal (with switching time of 1.25, 1, and 4.75 ps) and bi-temporal (with switching time of 2.25 and 4.75 ps) dynamic manipulations are performed by all-optical driven molecularization process of hybrid metasurfaces loaded with silicon (Si) and germanium (Ge) under different polarizations. Combining these features, the temporally programmed THz logic gates are last experimentally demonstrated, possessing basic operation of XNOR, NOR, and OR, as a proof-of-concept application. This reported light-driven programmable THz flat-optics allows ultrafast hybrid molecularization processes and new possibilities for miniaturized, flexible, multifunctional, and temporally programmable integrated devices.

Abstract Image

太赫兹元器件的光子诱导超快多时态编程
动态太赫兹(THz)元表面具有调制和多路复用电磁功能,对基于波的计算、六代通信和其他应用非常重要。多功能动态开关通常依赖于一系列复杂或不兼容的多场激活,系统复杂性过高,附加损耗大,调制速度慢,且具有惯性时变特性,从而限制了更广泛的应用。在这里,一种光子诱导的超快可编程太赫兹元器件在时频维度上进行了重新设计,具有偏振去耦的时间响应。通过多材料和触发开关的像素化设计,多模态调制超越了材料固有的限制,实现了超快可编程时间演化。在 0.6 至 2 太赫兹的工作频段内,所有共振均可独立编程。硅(Si)和锗(Ge)混合超表面在不同极化条件下的全光驱动分子化过程实现了三时态(切换时间分别为 1.25、1 和 4.75 ps)和双时态(切换时间分别为 2.25 和 4.75 ps)动态操控。结合这些特点,最后实验演示了时序编程太赫兹逻辑门,具有 XNOR、NOR 和 OR 的基本操作,作为概念验证应用。据报道,这种光驱动可编程太赫兹平面光学技术可实现超快混合分子化过程,并为微型化、灵活、多功能和时间可编程集成器件提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信