Yeeun Park, Ji-Min Woo, Jaeeun Shin, Myunghae Chung, Eun-Ji Seo, Sung-Joon Lee, Jin-Byung Park
{"title":"Unveiling the biological activities of the microbial long chain hydroxy fatty acids as dual agonists of GPR40 and GPR120","authors":"Yeeun Park, Ji-Min Woo, Jaeeun Shin, Myunghae Chung, Eun-Ji Seo, Sung-Joon Lee, Jin-Byung Park","doi":"10.1016/j.foodchem.2024.142010","DOIUrl":null,"url":null,"abstract":"The physiological functions of various fatty acid-originating metabolites from foods and fermented products remained mostly untouched. Thereby, this study examined the biological activities of hydroxy fatty acids as agonists of G protein-coupled receptors (i.e., GPR40 and GPR120), which are derived from long-chain fatty acids (e.g., oleic acid and linoleic acid) by microbiota. Cell-based Ca<sup>2+</sup> mobilization assays and in silico docking simulations revealed that not only the degree of unsaturation but also the number and position of hydroxyl groups played a key role in their agonist activities. For instance, 8,11-dihydroxyoctadec-9<em>Z</em>-enoic acid exhibited significantly greater Ca<sup>2+</sup> response in the GPR40/GPR120-expressing cells as compared to the endogenous agonists (e.g., linoleic acid and docosahexaenoic acid), forming hydrogen bond interactions with residues in the ligand-binding pockets of receptors. This study will contribute to understanding the relationships between fatty acid structures and agonist activities.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.142010","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The physiological functions of various fatty acid-originating metabolites from foods and fermented products remained mostly untouched. Thereby, this study examined the biological activities of hydroxy fatty acids as agonists of G protein-coupled receptors (i.e., GPR40 and GPR120), which are derived from long-chain fatty acids (e.g., oleic acid and linoleic acid) by microbiota. Cell-based Ca2+ mobilization assays and in silico docking simulations revealed that not only the degree of unsaturation but also the number and position of hydroxyl groups played a key role in their agonist activities. For instance, 8,11-dihydroxyoctadec-9Z-enoic acid exhibited significantly greater Ca2+ response in the GPR40/GPR120-expressing cells as compared to the endogenous agonists (e.g., linoleic acid and docosahexaenoic acid), forming hydrogen bond interactions with residues in the ligand-binding pockets of receptors. This study will contribute to understanding the relationships between fatty acid structures and agonist activities.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture