Laser-Controlled Information Releasing and Hiding Based on Perovskite Phosphors

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Panpan Li, Lifan Shen, Yuhang Zhang, Desheng Li, Edwin Yue Bun Pun, Hai Lin
{"title":"Laser-Controlled Information Releasing and Hiding Based on Perovskite Phosphors","authors":"Panpan Li, Lifan Shen, Yuhang Zhang, Desheng Li, Edwin Yue Bun Pun, Hai Lin","doi":"10.1021/acsami.4c17038","DOIUrl":null,"url":null,"abstract":"Laser-active interference with high confidentiality and convenience opens up a cutting-edge path for releasing and hiding key targets; however, its development still faces enormous challenges owing to the difficulty of concealing objects. Herein, a novel conceptual design for laser-controlled information release and hiding (LIRH) is proposed and successfully realized. Cs<sub>2</sub>NaInCl<sub>6</sub>:Er<sup>3+</sup>, Yb<sup>3+</sup> (CNIC:Er, Yb) perovskite microcrystal is adopted as a carrier for LIRH implementation, exhibiting excellent up-conversion (UC) emission under NIR (980 and 1530 nm) irradiation due to its ultralow phonon energy. The fluorescence intensity crossover and outstanding photon output capacity are revealed in comparison with Er<sup>3+</sup>/Yb<sup>3+</sup> codoped and Er<sup>3+</sup> single-doped CNIC phosphors under different laser sources, and the obvious difference in quantum yields (QY) under 980 and 1530 nm excitation provides theoretical possibility for LIRH. More importantly, the obtained LIRH features high stability at temperatures up to 413 K, showing good adaptability in various potential scenarios. Moreover, CNIC:Er, Yb is further combined with polyacrylonitrile (PAN) polymer to form fluorescent fibers with exceptional crystal stability and composite flexibility, thus making the LIRH code a reality based on perovskite composite phosphors. The laser-active invisibility offers an innovative idea for LIRH, further extending the application of LIRH in the field of information encryption, which has promising prospects in information safety, advanced anticounterfeiting, and smart responsive materials.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17038","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Laser-active interference with high confidentiality and convenience opens up a cutting-edge path for releasing and hiding key targets; however, its development still faces enormous challenges owing to the difficulty of concealing objects. Herein, a novel conceptual design for laser-controlled information release and hiding (LIRH) is proposed and successfully realized. Cs2NaInCl6:Er3+, Yb3+ (CNIC:Er, Yb) perovskite microcrystal is adopted as a carrier for LIRH implementation, exhibiting excellent up-conversion (UC) emission under NIR (980 and 1530 nm) irradiation due to its ultralow phonon energy. The fluorescence intensity crossover and outstanding photon output capacity are revealed in comparison with Er3+/Yb3+ codoped and Er3+ single-doped CNIC phosphors under different laser sources, and the obvious difference in quantum yields (QY) under 980 and 1530 nm excitation provides theoretical possibility for LIRH. More importantly, the obtained LIRH features high stability at temperatures up to 413 K, showing good adaptability in various potential scenarios. Moreover, CNIC:Er, Yb is further combined with polyacrylonitrile (PAN) polymer to form fluorescent fibers with exceptional crystal stability and composite flexibility, thus making the LIRH code a reality based on perovskite composite phosphors. The laser-active invisibility offers an innovative idea for LIRH, further extending the application of LIRH in the field of information encryption, which has promising prospects in information safety, advanced anticounterfeiting, and smart responsive materials.

Abstract Image

基于 Perovskite 磷光体的激光控制信息释放和隐藏技术
具有高保密性和便捷性的激光主动干扰为关键目标的释放和隐藏开辟了一条前沿之路,但由于隐藏对象的困难,其发展仍面临巨大挑战。本文提出并成功实现了一种新型的激光控制信息释放与隐藏(LIRH)概念设计。采用 Cs2NaInCl6:Er3+, Yb3+ (CNIC:Er, Yb)包晶微晶作为实现 LIRH 的载体,由于其具有超低的声子能量,在近红外(980 纳米和 1530 纳米)照射下表现出优异的上转换(UC)发射。与 Er3+/Yb3+ 共掺和和 Er3+ 单掺和 CNIC 磷光体相比,在不同激光源下的荧光强度交叉和出色的光子输出能力得到了揭示,而在 980 和 1530 纳米激发下量子产率(QY)的明显差异为 LIRH 提供了理论上的可能性。更重要的是,所获得的 LIRH 在高达 413 K 的温度下具有很高的稳定性,显示出在各种潜在应用场景下的良好适应性。此外,CNIC:Er, Yb 还与聚丙烯腈 (PAN) 聚合物进一步结合,形成具有优异晶体稳定性和复合灵活性的荧光纤维,从而使基于过氧化物复合荧光粉的 LIRH 代码成为现实。激光主动隐形为 LIRH 提供了一种创新思路,进一步拓展了 LIRH 在信息加密领域的应用,在信息安全、先进防伪和智能响应材料等方面具有广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信