Yanxia Yu, Ping Li, Xuanyu Xie, Jinhao Xie, Hao Liu, Tzu-Hao Lu, Fan Yang, Xihong Lu, Zujin Yang
{"title":"High Areal Capacity and Long-life Sn Anode Enabled by Tuning Electrolyte Solvation Chemistry and Interfacial Adsorbed Molecular Layer","authors":"Yanxia Yu, Ping Li, Xuanyu Xie, Jinhao Xie, Hao Liu, Tzu-Hao Lu, Fan Yang, Xihong Lu, Zujin Yang","doi":"10.1016/j.ensm.2024.103904","DOIUrl":null,"url":null,"abstract":"Tin (Sn) is an appealing metal anode for aqueous batteries (ABs) due to its high theoretic capacity, elevated hydrogen overpotential, affordability and environmentally friendly nature. However, the parasitic reaction and dead Sn formation are two critical issues that impede the practical application of Sn metal batteries. Herein, we demonstrate that the addition of trace amount of polyvinylpyrrolidone (PVP, 1 mM) into the pristine electrolyte can effectively solve these issues. Specifically, the PVP additive can reshape the structure of Sn<sup>2+</sup> solvation sheath to accelerate cations migration and suppress water-induced side reaction and the formation of hydroxide sulfate. Additionally, the preferential adsorption of PVP at the interface also promotes the three-dimensional (3D) diffusion of Sn<sup>2+</sup>, facilitating uniform Sn deposition. As a result, symmetric cells with PVP additive in the electrolyte deliver stable cycling for up to 1800 h at 10 mA cm<sup>−2</sup>/1 mAh cm<sup>−2</sup> or 230 h at 5 mA cm<sup>−2</sup>/10 mAh cm<sup>−2</sup>. The designed electrolyte also enables the MnO<sub>2</sub>//Sn full battery to maintain a discharge capacity of 0.92 mAh cm<sup>−2</sup> over 3000 cycles at current density of 6 mA cm<sup>−2</sup> and supports the stable cycling of PbO<sub>2</sub>//Sn full battery for 230 cycles under the high capacity of 10 mAh cm<sup>−2</sup>.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"23 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Tin (Sn) is an appealing metal anode for aqueous batteries (ABs) due to its high theoretic capacity, elevated hydrogen overpotential, affordability and environmentally friendly nature. However, the parasitic reaction and dead Sn formation are two critical issues that impede the practical application of Sn metal batteries. Herein, we demonstrate that the addition of trace amount of polyvinylpyrrolidone (PVP, 1 mM) into the pristine electrolyte can effectively solve these issues. Specifically, the PVP additive can reshape the structure of Sn2+ solvation sheath to accelerate cations migration and suppress water-induced side reaction and the formation of hydroxide sulfate. Additionally, the preferential adsorption of PVP at the interface also promotes the three-dimensional (3D) diffusion of Sn2+, facilitating uniform Sn deposition. As a result, symmetric cells with PVP additive in the electrolyte deliver stable cycling for up to 1800 h at 10 mA cm−2/1 mAh cm−2 or 230 h at 5 mA cm−2/10 mAh cm−2. The designed electrolyte also enables the MnO2//Sn full battery to maintain a discharge capacity of 0.92 mAh cm−2 over 3000 cycles at current density of 6 mA cm−2 and supports the stable cycling of PbO2//Sn full battery for 230 cycles under the high capacity of 10 mAh cm−2.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.