Yanxia Yu , Ping Li , Xuanyu Xie , Jinhao Xie , Hao Liu , Tzu-Hao Lu , Fan Yang , Xihong Lu , Zujin Yang
{"title":"High areal capacity and long-life Sn anode enabled by tuning electrolyte solvation chemistry and interfacial adsorbed molecular layer","authors":"Yanxia Yu , Ping Li , Xuanyu Xie , Jinhao Xie , Hao Liu , Tzu-Hao Lu , Fan Yang , Xihong Lu , Zujin Yang","doi":"10.1016/j.ensm.2024.103904","DOIUrl":null,"url":null,"abstract":"<div><div>Tin (Sn) is an appealing metal anode for aqueous batteries (ABs) due to its high theoretical capacity, elevated hydrogen overpotential, affordability and environmentally friendly nature. However, the parasitic reaction and dead Sn formation are two critical issues that impede the practical application of Sn metal batteries. Herein, we demonstrate that the addition of trace amount of polyvinylpyrrolidone (PVP, 1 mM) into the pristine electrolyte can effectively solve these issues. Specifically, the PVP additive can reshape the structure of Sn<sup>2+</sup> solvation sheath to accelerate cations migration and suppress water-induced side reaction and the formation of hydroxide sulfate. Additionally, the preferential adsorption of PVP at the interface also promotes the three-dimensional (3D) diffusion of Sn<sup>2+</sup>, facilitating uniform Sn deposition. As a result, symmetric cells with PVP additive in the electrolyte deliver stable cycling for up to 1800 h at 10 mA cm<sup>−2</sup>/1 mAh cm<sup>−2</sup> or 230 h at 5 mA cm<sup>−2</sup>/10 mAh cm<sup>−2</sup>. The designed electrolyte also enables the MnO<sub>2</sub>//Sn full battery to maintain a discharge capacity of 0.92 mAh cm<sup>−2</sup> over 3000 cycles at current density of 6 mA cm<sup>−2</sup> and supports the stable cycling of PbO<sub>2</sub>//Sn full battery for 230 cycles under the high capacity of 10 mAh cm<sup>−2</sup>.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"74 ","pages":"Article 103904"},"PeriodicalIF":18.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240582972400730X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tin (Sn) is an appealing metal anode for aqueous batteries (ABs) due to its high theoretical capacity, elevated hydrogen overpotential, affordability and environmentally friendly nature. However, the parasitic reaction and dead Sn formation are two critical issues that impede the practical application of Sn metal batteries. Herein, we demonstrate that the addition of trace amount of polyvinylpyrrolidone (PVP, 1 mM) into the pristine electrolyte can effectively solve these issues. Specifically, the PVP additive can reshape the structure of Sn2+ solvation sheath to accelerate cations migration and suppress water-induced side reaction and the formation of hydroxide sulfate. Additionally, the preferential adsorption of PVP at the interface also promotes the three-dimensional (3D) diffusion of Sn2+, facilitating uniform Sn deposition. As a result, symmetric cells with PVP additive in the electrolyte deliver stable cycling for up to 1800 h at 10 mA cm−2/1 mAh cm−2 or 230 h at 5 mA cm−2/10 mAh cm−2. The designed electrolyte also enables the MnO2//Sn full battery to maintain a discharge capacity of 0.92 mAh cm−2 over 3000 cycles at current density of 6 mA cm−2 and supports the stable cycling of PbO2//Sn full battery for 230 cycles under the high capacity of 10 mAh cm−2.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.