Ankita Mandal, Ijaj Ahmed, Andreas F. M. Kilbinger
{"title":"Catalytic Syntheses of Thiol-End-Functionalized ROMP Polymers","authors":"Ankita Mandal, Ijaj Ahmed, Andreas F. M. Kilbinger","doi":"10.1021/acsmacrolett.4c00571","DOIUrl":null,"url":null,"abstract":"Thiol-functionalized polymers have become a crucial class of materials due to their distinct chemical properties and versatile reactivity, leading to a broad spectrum of applications. Herein, we report the straightforward syntheses of a wide range of thiol-end-functionalized ring-opening metathesis polymerization (ROMP) polymers exploiting our previously reported catalytic ROMP mechanisms using suitable chain transfer agents. All the synthesized polymers were characterized via SEC, <sup>1</sup>H NMR spectroscopy and MALDI-ToF mass spectrometry techniques. Furthermore, the existence of thiol groups on the polymer chains was verified through the well-established thiol coating reaction on gold nanoparticle surfaces. We believe this method of synthesizing thiol-end-functionalized ROMP polymers (using a reduced amount of ruthenium metal compared to conventional living ROMP) will be of great importance to materials science and biochemical research.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"11 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.4c00571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Thiol-functionalized polymers have become a crucial class of materials due to their distinct chemical properties and versatile reactivity, leading to a broad spectrum of applications. Herein, we report the straightforward syntheses of a wide range of thiol-end-functionalized ring-opening metathesis polymerization (ROMP) polymers exploiting our previously reported catalytic ROMP mechanisms using suitable chain transfer agents. All the synthesized polymers were characterized via SEC, 1H NMR spectroscopy and MALDI-ToF mass spectrometry techniques. Furthermore, the existence of thiol groups on the polymer chains was verified through the well-established thiol coating reaction on gold nanoparticle surfaces. We believe this method of synthesizing thiol-end-functionalized ROMP polymers (using a reduced amount of ruthenium metal compared to conventional living ROMP) will be of great importance to materials science and biochemical research.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.