Yan Chen , Xiaoyu Yin , Yang Wei , Zelong Xu , Xiaohua Ma , Xiangyang Liu , Xu Wang
{"title":"Synthesis and characterization of polyimides with rigid folded fragments","authors":"Yan Chen , Xiaoyu Yin , Yang Wei , Zelong Xu , Xiaohua Ma , Xiangyang Liu , Xu Wang","doi":"10.1016/j.polymer.2024.127804","DOIUrl":null,"url":null,"abstract":"<div><div>The macromolecular chain of conventional polyimide (PI) is a predominant linear extension, which is anticipated to uphold robust interchain interactions essential for preserving overall mechanical and thermal performance. This study is dedicated to the design and synthesis for the novel PIs containing folded chains, with a particular emphasis on modifying the chain conformational behavior with respect to the structure of the aggregation state and the corresponding gas separation properties. First, two unidirectional diamine monomers, dibenzo [c, g] phenanthrene-9,12-diamine (NPDA) and anthracene-1,8-diamine (ADA), were meticulously synthesized through a sequence of chemical reactions, including Witting olefination and photocyclization. These monomers possess distinctive spatial characteristics: NPDA adopts a helical conformation, while ADA maintains a planar structure. Subsequently, the corresponding folded chain-containing PIs, denoted as NPI and API, were successfully achieved by copolymerizing one of the unidirectional monomers with the 6FDA-TPDA system. API and NPI generally exhibit a propensity for enhanced molecular chain stacking, while retaining their good solubility and processability. Drawing from both experimental data and simulation results, it was ascertained that the inclusion of these two monomers produces a rearrangement of pore sizes with a decrease in large-size micropores and an increase in the percentage of ultra-micropores. Moreover, the PI membranes with the folded fragments have a much better CO<sub>2</sub> plasticization resistance.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"315 ","pages":"Article 127804"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124011406","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The macromolecular chain of conventional polyimide (PI) is a predominant linear extension, which is anticipated to uphold robust interchain interactions essential for preserving overall mechanical and thermal performance. This study is dedicated to the design and synthesis for the novel PIs containing folded chains, with a particular emphasis on modifying the chain conformational behavior with respect to the structure of the aggregation state and the corresponding gas separation properties. First, two unidirectional diamine monomers, dibenzo [c, g] phenanthrene-9,12-diamine (NPDA) and anthracene-1,8-diamine (ADA), were meticulously synthesized through a sequence of chemical reactions, including Witting olefination and photocyclization. These monomers possess distinctive spatial characteristics: NPDA adopts a helical conformation, while ADA maintains a planar structure. Subsequently, the corresponding folded chain-containing PIs, denoted as NPI and API, were successfully achieved by copolymerizing one of the unidirectional monomers with the 6FDA-TPDA system. API and NPI generally exhibit a propensity for enhanced molecular chain stacking, while retaining their good solubility and processability. Drawing from both experimental data and simulation results, it was ascertained that the inclusion of these two monomers produces a rearrangement of pore sizes with a decrease in large-size micropores and an increase in the percentage of ultra-micropores. Moreover, the PI membranes with the folded fragments have a much better CO2 plasticization resistance.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.