{"title":"Deciphering the mass transfer and diffusion behavior in the oxidation of fatty alcohols to fatty acids over Pt/MCM-41","authors":"Jiarong Lu, Guoliang Li, Yue Pan, Mingyue Zhao, Fan Rong, Yihang Liu, Zhibo Zhang, Hui Zhao, Xin Zhou, Yibin Liu, Xiaobo Chen, Hao Yan, Chaohe Yang","doi":"10.1016/j.ces.2024.120931","DOIUrl":null,"url":null,"abstract":"<div><div>Selective oxidation of long-chain fatty alcohols into acids is an important value-added reaction. However, exploring the basic catalytic steps over Pt-based catalysts throughout the entire oxidation process is still ambiguous. In this work, we systematically investigated the synergistic mechanisms of adsorption, reaction, and diffusion over Pt/MCM-41 for normal/isomeric alcohols oxidation into acids via molecular dynamics, in-situ characterization, and experiments. Specifically, diffusion coefficients decrease with the increase of the molecular weight of normal molecules due to the increased van der Waals forces, while isomeric alcohols exhibit more complex patterns originated from the steric hindrance between Pt particles and mesopores. To quantitatively describe this pattern, a cluster size descriptor of <span><math><mrow><msubsup><mi>d</mi><mrow><mi>Pt</mi></mrow><mrow><mn>0.75</mn></mrow></msubsup><mo>×</mo><msubsup><mi>d</mi><mrow><mi>Pore</mi></mrow><mrow><mn>0.25</mn></mrow></msubsup></mrow></math></span> was defined. Notably, 2-ethylhexanol exhibits the best self-diffusion coefficients at the descriptor value of 3.14. Correspondingly, the oxidation of 2-ethylhexanol to 2-ethylhexanoic acid displays highest reaction conversion (68.67 %) and selectivity (65.59 %).</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"302 ","pages":"Article 120931"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250924012314","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Selective oxidation of long-chain fatty alcohols into acids is an important value-added reaction. However, exploring the basic catalytic steps over Pt-based catalysts throughout the entire oxidation process is still ambiguous. In this work, we systematically investigated the synergistic mechanisms of adsorption, reaction, and diffusion over Pt/MCM-41 for normal/isomeric alcohols oxidation into acids via molecular dynamics, in-situ characterization, and experiments. Specifically, diffusion coefficients decrease with the increase of the molecular weight of normal molecules due to the increased van der Waals forces, while isomeric alcohols exhibit more complex patterns originated from the steric hindrance between Pt particles and mesopores. To quantitatively describe this pattern, a cluster size descriptor of was defined. Notably, 2-ethylhexanol exhibits the best self-diffusion coefficients at the descriptor value of 3.14. Correspondingly, the oxidation of 2-ethylhexanol to 2-ethylhexanoic acid displays highest reaction conversion (68.67 %) and selectivity (65.59 %).
期刊介绍:
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline.
Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.