Whole genome CRISPRi screening identifies druggable vulnerabilities in an isoniazid resistant strain of Mycobacterium tuberculosis

IF 3.784 3区 化学 Q1 Chemistry
XinYue Wang, William J. Jowsey, Chen-Yi Cheung, Caitlan J. Smart, Hannah R. Klaus, Noon EJ Seeto, Natalie JE Waller, Michael T. Chrisp, Amanda L. Peterson, Boatema Ofori-Anyinam, Emily Strong, Brunda Nijagal, Nicholas P. West, Jason H. Yang, Peter C. Fineran, Gregory M. Cook, Simon A. Jackson, Matthew B. McNeil
{"title":"Whole genome CRISPRi screening identifies druggable vulnerabilities in an isoniazid resistant strain of Mycobacterium tuberculosis","authors":"XinYue Wang, William J. Jowsey, Chen-Yi Cheung, Caitlan J. Smart, Hannah R. Klaus, Noon EJ Seeto, Natalie JE Waller, Michael T. Chrisp, Amanda L. Peterson, Boatema Ofori-Anyinam, Emily Strong, Brunda Nijagal, Nicholas P. West, Jason H. Yang, Peter C. Fineran, Gregory M. Cook, Simon A. Jackson, Matthew B. McNeil","doi":"10.1038/s41467-024-54072-w","DOIUrl":null,"url":null,"abstract":"<p>Drug-resistant strains of <i>Mycobacterium tuberculosis</i> are a major global health problem. Resistance to the front-line antibiotic isoniazid is often associated with mutations in the <i>katG</i>-encoded bifunctional catalase-peroxidase. We hypothesise that perturbed KatG activity would generate collateral vulnerabilities in isoniazid-resistant <i>katG</i> mutants, providing potential pathway targets to combat isoniazid resistance. Whole genome CRISPRi screens, transcriptomics, and metabolomics were used to generate a genome-wide map of cellular vulnerabilities in an isoniazid-resistant <i>katG</i> mutant strain of <i>M. tuberculosis</i>. Here, we show that metabolic and transcriptional remodelling compensates for the loss of KatG but in doing so generates vulnerabilities in respiration, ribosome biogenesis, and nucleotide and amino acid metabolism. Importantly, these vulnerabilities are more sensitive to inhibition in an isoniazid-resistant <i>katG</i> mutant and translated to clinical isolates. This work highlights how changes in the physiology of drug-resistant strains generates druggable vulnerabilities that can be exploited to improve clinical outcomes.</p>","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":"34 1","pages":""},"PeriodicalIF":3.7840,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54072-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

Drug-resistant strains of Mycobacterium tuberculosis are a major global health problem. Resistance to the front-line antibiotic isoniazid is often associated with mutations in the katG-encoded bifunctional catalase-peroxidase. We hypothesise that perturbed KatG activity would generate collateral vulnerabilities in isoniazid-resistant katG mutants, providing potential pathway targets to combat isoniazid resistance. Whole genome CRISPRi screens, transcriptomics, and metabolomics were used to generate a genome-wide map of cellular vulnerabilities in an isoniazid-resistant katG mutant strain of M. tuberculosis. Here, we show that metabolic and transcriptional remodelling compensates for the loss of KatG but in doing so generates vulnerabilities in respiration, ribosome biogenesis, and nucleotide and amino acid metabolism. Importantly, these vulnerabilities are more sensitive to inhibition in an isoniazid-resistant katG mutant and translated to clinical isolates. This work highlights how changes in the physiology of drug-resistant strains generates druggable vulnerabilities that can be exploited to improve clinical outcomes.

Abstract Image

全基因组 CRISPRi 筛选确定结核分枝杆菌耐异烟肼菌株中的可药用漏洞
结核分枝杆菌的耐药菌株是一个重大的全球健康问题。对一线抗生素异烟肼的耐药性通常与 katG 编码的双功能过氧化氢酶-过氧化物酶的突变有关。我们假设,KatG活性的紊乱会在耐异烟肼的katG突变体中产生附带的脆弱性,从而为抗击异烟肼耐药性提供潜在的途径靶点。我们利用全基因组 CRISPRi 筛选、转录组学和代谢组学绘制了耐异烟肼 katG 突变株结核杆菌细胞脆弱性的全基因组图谱。在这里,我们发现新陈代谢和转录重塑可补偿 KatG 的缺失,但在此过程中会产生呼吸、核糖体生物发生以及核苷酸和氨基酸代谢方面的弱点。重要的是,这些弱点对异烟肼抗性KatG突变体的抑制更为敏感,并可转化为临床分离株。这项工作强调了耐药菌株的生理变化如何产生可被药物利用的弱点,从而改善临床疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Combinatorial Science
ACS Combinatorial Science CHEMISTRY, APPLIED-CHEMISTRY, MEDICINAL
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信