Siddharth Doshi, Anqi Ji, Ali I. Mahdi, Scott T. Keene, Skyler P. Selvin, Philippe Lalanne, Eric A. Appel, Nicholas A. Melosh, Mark L. Brongersma
{"title":"Electrochemically mutable soft metasurfaces","authors":"Siddharth Doshi, Anqi Ji, Ali I. Mahdi, Scott T. Keene, Skyler P. Selvin, Philippe Lalanne, Eric A. Appel, Nicholas A. Melosh, Mark L. Brongersma","doi":"10.1038/s41563-024-02042-4","DOIUrl":null,"url":null,"abstract":"<p>Active optical metasurfaces, capable of dynamically manipulating light in ultrathin form factors, enable novel interfaces between humans and technology. In such interfaces, soft materials bring many advantages based on their flexibility, compliance and large stimulus-driven responses. Here, we create electrochemically mutable, soft metasurfaces that capitalize on the swelling of soft conducting polymers to alter the shape and associated resonant response of metasurface elements. Such geometric tuning overcomes the typical trade-off between achieving substantial tuning and low optical loss that is intrinsic to dynamic metasurfaces relying on index tuning of materials. Using the commercial polymer PEDOT:PSS, we demonstrate dynamic, high-resolution colour tuning and high-diffraction-efficiency (>19%) beam-steering devices that operate at CMOS-compatible voltages (~1.5 V). These results highlight how the deformability of soft materials can enable a class of high-performance metasurfaces that are suitable for body-worn technologies.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"43 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-024-02042-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Active optical metasurfaces, capable of dynamically manipulating light in ultrathin form factors, enable novel interfaces between humans and technology. In such interfaces, soft materials bring many advantages based on their flexibility, compliance and large stimulus-driven responses. Here, we create electrochemically mutable, soft metasurfaces that capitalize on the swelling of soft conducting polymers to alter the shape and associated resonant response of metasurface elements. Such geometric tuning overcomes the typical trade-off between achieving substantial tuning and low optical loss that is intrinsic to dynamic metasurfaces relying on index tuning of materials. Using the commercial polymer PEDOT:PSS, we demonstrate dynamic, high-resolution colour tuning and high-diffraction-efficiency (>19%) beam-steering devices that operate at CMOS-compatible voltages (~1.5 V). These results highlight how the deformability of soft materials can enable a class of high-performance metasurfaces that are suitable for body-worn technologies.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.