Lindsey M Pale, Jude B Khatib, Alexandra Nusawardhana, Joshua Straka, Claudia M Nicolae, George-Lucian Moldovan
{"title":"CRISPR knockout genome-wide screens identify the HELQ-RAD52 axis in regulating the repair of cisplatin-induced single-stranded DNA gaps","authors":"Lindsey M Pale, Jude B Khatib, Alexandra Nusawardhana, Joshua Straka, Claudia M Nicolae, George-Lucian Moldovan","doi":"10.1093/nar/gkae998","DOIUrl":null,"url":null,"abstract":"Treatment with genotoxic agents, such as platinum compounds, is still the mainstay therapeutical approach for the majority of cancers. Our understanding of the mechanisms of action of these drugs is, however, imperfect and continuously evolving. Recent advances highlighted single-stranded DNA (ssDNA) gap accumulation as a potential determinant underlying cisplatin chemosensitivity, at least in some genetic backgrounds, such as BRCA mutations. Cisplatin-induced ssDNA gaps form upon restart of DNA synthesis downstream of cisplatin-induced lesions through repriming catalyzed by the PRIMPOL enzyme. Here, we show that PRIMPOL overexpression in otherwise wild-type cells results in accumulation of cisplatin-induced ssDNA gaps without sensitizing cells to cisplatin, suggesting that ssDNA gap accumulation does not confer cisplatin sensitivity in BRCA-proficient cells. To understand how ssDNA gaps may cause cellular sensitivity, we employed CRISPR-mediated genome-wide genetic screening to identify factors which enable the cytotoxicity of cisplatin-induced ssDNA gaps. We found that the helicase HELQ specifically suppresses cisplatin sensitivity in PRIMPOL-overexpressing cells, and this is associated with reduced ssDNA accumulation. We moreover identify RAD52 as a mediator of this pathway. RAD52 promotes ssDNA gap accumulation through a BRCA-mediated mechanism. Our work identified the HELQ-RAD52-BRCA axis as a regulator of ssDNA gap processing and cisplatin sensitization.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"8 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae998","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Treatment with genotoxic agents, such as platinum compounds, is still the mainstay therapeutical approach for the majority of cancers. Our understanding of the mechanisms of action of these drugs is, however, imperfect and continuously evolving. Recent advances highlighted single-stranded DNA (ssDNA) gap accumulation as a potential determinant underlying cisplatin chemosensitivity, at least in some genetic backgrounds, such as BRCA mutations. Cisplatin-induced ssDNA gaps form upon restart of DNA synthesis downstream of cisplatin-induced lesions through repriming catalyzed by the PRIMPOL enzyme. Here, we show that PRIMPOL overexpression in otherwise wild-type cells results in accumulation of cisplatin-induced ssDNA gaps without sensitizing cells to cisplatin, suggesting that ssDNA gap accumulation does not confer cisplatin sensitivity in BRCA-proficient cells. To understand how ssDNA gaps may cause cellular sensitivity, we employed CRISPR-mediated genome-wide genetic screening to identify factors which enable the cytotoxicity of cisplatin-induced ssDNA gaps. We found that the helicase HELQ specifically suppresses cisplatin sensitivity in PRIMPOL-overexpressing cells, and this is associated with reduced ssDNA accumulation. We moreover identify RAD52 as a mediator of this pathway. RAD52 promotes ssDNA gap accumulation through a BRCA-mediated mechanism. Our work identified the HELQ-RAD52-BRCA axis as a regulator of ssDNA gap processing and cisplatin sensitization.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.