Enebie Ramos Cáceres, Lotte Kemperman, Kimberly M. Bonger
{"title":"Environment-sensitive turn-on fluorescent probe enables live cell imaging of myeloperoxidase activity during NETosis","authors":"Enebie Ramos Cáceres, Lotte Kemperman, Kimberly M. Bonger","doi":"10.1038/s42004-024-01338-5","DOIUrl":null,"url":null,"abstract":"Myeloperoxidase (MPO) plays an important role in the immune response of human neutrophils and has been implicated in autoimmune conditions, cardiovascular disorders, and neurodegeneration. Current methods to detect MPO activity rely on the detection of HOCl using activatable probes or require challenging experimental procedures. Therefore, these tools provide limited information about the dynamics and localization of MPO in complex molecular processes such as NETosis in real time. In this study, we report a ‘’turn-on” activity-based probe that fluoresces exclusively upon binding to MPO, exhibits minimal background fluorescence in buffered aqueous media, and is blocked by MPO inhibitors. Our probe facilitates real-time imaging of direct MPO activity in human neutrophils and HL-60-derived granulocytes during NETosis under wash-free conditions. Furthermore, it allows for the discrimination between different triggers of NETosis in human neutrophils. These findings hold promise for advancing our understanding of the role of MPO in immune responses and inflammatory conditions. Myeloperoxidase (MPO) plays an important role in the innate immune response of human neutrophils and has been implicated in various diseases, but current methods to detect MPO provide limited information about its dynamics and localization in complex molecular processes. Here, the authors develop an activity-based probe that fluoresces exclusively upon binding to MPO, enabling real-time imaging of direct intracellular MPO activity in human neutrophils and HL-60-derived granulocytes during NETosis under wash-free conditions.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-7"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01338-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01338-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Myeloperoxidase (MPO) plays an important role in the immune response of human neutrophils and has been implicated in autoimmune conditions, cardiovascular disorders, and neurodegeneration. Current methods to detect MPO activity rely on the detection of HOCl using activatable probes or require challenging experimental procedures. Therefore, these tools provide limited information about the dynamics and localization of MPO in complex molecular processes such as NETosis in real time. In this study, we report a ‘’turn-on” activity-based probe that fluoresces exclusively upon binding to MPO, exhibits minimal background fluorescence in buffered aqueous media, and is blocked by MPO inhibitors. Our probe facilitates real-time imaging of direct MPO activity in human neutrophils and HL-60-derived granulocytes during NETosis under wash-free conditions. Furthermore, it allows for the discrimination between different triggers of NETosis in human neutrophils. These findings hold promise for advancing our understanding of the role of MPO in immune responses and inflammatory conditions. Myeloperoxidase (MPO) plays an important role in the innate immune response of human neutrophils and has been implicated in various diseases, but current methods to detect MPO provide limited information about its dynamics and localization in complex molecular processes. Here, the authors develop an activity-based probe that fluoresces exclusively upon binding to MPO, enabling real-time imaging of direct intracellular MPO activity in human neutrophils and HL-60-derived granulocytes during NETosis under wash-free conditions.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.