{"title":"Paving the way for future advancements in superconductivity research through gold ormus studies","authors":"Mohamad Hasson, Mohamad Asem Alkourdi, Marwan Al-Raeei","doi":"10.1186/s43088-024-00550-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Gold ormus is a type of superconductor that can exhibit superconductivity at temperatures below 1 Kelvin, allowing it to conduct electricity without resistance. While not as widely used as other materials like niobium or lead, gold ormus is valuable for research in superconductivity. Limited studies have been conducted on gold ormus. Numerical simulations of the Ginzburg–Landau theory have yielded important results for both gold ormus.</p><h3>Results</h3><p>Class-I and class-II superconducting gold ormus, have been successfully simulated using the Runge–Kutta fourth-order method. Our analysis shows the convergence of our simulation outcomes and emphasizes the importance of considering truncation error and selecting appropriate step sizes for accurate results. The periodic factor of penetration (PFP) for each superconductor has been determined, with class-I superconducting gold ormus having a PFP of 250 nm, class-II superconducting gold ormus having a PFP of 566.2 nm. The relationship between the PFP and the length of the penetration depth has also been revealed.</p><h3>Conclusions</h3><p>Our study confirms the accuracy of the Runge–Kutta fourth-order method in simulating superconductors. By analyzing the PFP for different superconducting materials, we have identified trends in penetration depth that contribute to understanding superconductivity. Our simulations provide valuable insights for further research in the field of superconductivity. Adjusting parameters carefully ensures reliable simulations and advances progress in superconductivity research.</p></div>","PeriodicalId":481,"journal":{"name":"Beni-Suef University Journal of Basic and Applied Sciences","volume":"13 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-024-00550-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beni-Suef University Journal of Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43088-024-00550-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Gold ormus is a type of superconductor that can exhibit superconductivity at temperatures below 1 Kelvin, allowing it to conduct electricity without resistance. While not as widely used as other materials like niobium or lead, gold ormus is valuable for research in superconductivity. Limited studies have been conducted on gold ormus. Numerical simulations of the Ginzburg–Landau theory have yielded important results for both gold ormus.
Results
Class-I and class-II superconducting gold ormus, have been successfully simulated using the Runge–Kutta fourth-order method. Our analysis shows the convergence of our simulation outcomes and emphasizes the importance of considering truncation error and selecting appropriate step sizes for accurate results. The periodic factor of penetration (PFP) for each superconductor has been determined, with class-I superconducting gold ormus having a PFP of 250 nm, class-II superconducting gold ormus having a PFP of 566.2 nm. The relationship between the PFP and the length of the penetration depth has also been revealed.
Conclusions
Our study confirms the accuracy of the Runge–Kutta fourth-order method in simulating superconductors. By analyzing the PFP for different superconducting materials, we have identified trends in penetration depth that contribute to understanding superconductivity. Our simulations provide valuable insights for further research in the field of superconductivity. Adjusting parameters carefully ensures reliable simulations and advances progress in superconductivity research.
期刊介绍:
Beni-Suef University Journal of Basic and Applied Sciences (BJBAS) is a peer-reviewed, open-access journal. This journal welcomes submissions of original research, literature reviews, and editorials in its respected fields of fundamental science, applied science (with a particular focus on the fields of applied nanotechnology and biotechnology), medical sciences, pharmaceutical sciences, and engineering. The multidisciplinary aspects of the journal encourage global collaboration between researchers in multiple fields and provide cross-disciplinary dissemination of findings.