{"title":"Pseudoentropy sum rule by analytical continuation of the superposition parameter","authors":"Wu-zhong Guo, Yao-zong Jiang, Jin Xu","doi":"10.1007/JHEP11(2024)069","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish a sum rule that connects the pseudoentropy and entanglement entropy of the superposition state. Through analytical continuation of the superposition parameter, we demonstrate that the transition matrix and density matrix of the superposition state can be treated in a unified manner. Within this framework, we naturally derive sum rules for the (reduced) transition matrix, pseudo-Rényi entropy, and pseudoentropy. Furthermore, we demonstrate the close relationship between the sum rule for pseudoentropy and the singularity structure of the entropy function for the superposition state after analytical continuation. We also explore potential applications of the sum rule, including its relevance to understanding the gravity dual of non-Hermitian transition matrices and establishing upper bounds for the absolute value of pseudoentropy.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)069.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP11(2024)069","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we establish a sum rule that connects the pseudoentropy and entanglement entropy of the superposition state. Through analytical continuation of the superposition parameter, we demonstrate that the transition matrix and density matrix of the superposition state can be treated in a unified manner. Within this framework, we naturally derive sum rules for the (reduced) transition matrix, pseudo-Rényi entropy, and pseudoentropy. Furthermore, we demonstrate the close relationship between the sum rule for pseudoentropy and the singularity structure of the entropy function for the superposition state after analytical continuation. We also explore potential applications of the sum rule, including its relevance to understanding the gravity dual of non-Hermitian transition matrices and establishing upper bounds for the absolute value of pseudoentropy.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).