Multi-modal and multi-level structure-specific spectral intensity measures for seismic evaluation of reinforced concrete frames

IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Edmond V. Muho, Nicos A. Kalapodis, Dimitri E. Beskos
{"title":"Multi-modal and multi-level structure-specific spectral intensity measures for seismic evaluation of reinforced concrete frames","authors":"Edmond V. Muho,&nbsp;Nicos A. Kalapodis,&nbsp;Dimitri E. Beskos","doi":"10.1007/s10518-024-02009-5","DOIUrl":null,"url":null,"abstract":"<div><p>Two new structure-specific scalar intensity measures for plane reinforced concrete moment resisting frames under far-fault ground motions are proposed. These intensity measures, of the spectral acceleration and spectral displacement type, are characterized as multi-modal and multi-level. They encompass the effects of the first four natural periods and are defined for four performance levels, including considerations of inelasticity up to the collapse prevention level. This is achieved with the aid of equivalent linear modal damping ratios previously developed by the authors for performance-based seismic design purposes. These modal damping ratios, dependent on period, soil type, and deformation, are associated with the transformation of the original multi-degree-of-freedom (MDOF) nonlinear structure into an equivalent MDOF linear one. The proposed intensity measures are conceptualized to be simple and elegant, incorporating all the aforementioned features rationally, without the artificial combination of terms, definition of period ranges, or addition of coefficients determined by optimization procedures. This approach sets it apart from existing measures that attempt to account for multiple modes and inelasticity. A comparison of the proposed intensity measures against ten of the most popular existing ones in the literature, focusing on efficiency, practicality, proficiency, scaling robustness and sufficiency, demonstrate their advantages.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 14","pages":"6955 - 6989"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-02009-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two new structure-specific scalar intensity measures for plane reinforced concrete moment resisting frames under far-fault ground motions are proposed. These intensity measures, of the spectral acceleration and spectral displacement type, are characterized as multi-modal and multi-level. They encompass the effects of the first four natural periods and are defined for four performance levels, including considerations of inelasticity up to the collapse prevention level. This is achieved with the aid of equivalent linear modal damping ratios previously developed by the authors for performance-based seismic design purposes. These modal damping ratios, dependent on period, soil type, and deformation, are associated with the transformation of the original multi-degree-of-freedom (MDOF) nonlinear structure into an equivalent MDOF linear one. The proposed intensity measures are conceptualized to be simple and elegant, incorporating all the aforementioned features rationally, without the artificial combination of terms, definition of period ranges, or addition of coefficients determined by optimization procedures. This approach sets it apart from existing measures that attempt to account for multiple modes and inelasticity. A comparison of the proposed intensity measures against ten of the most popular existing ones in the literature, focusing on efficiency, practicality, proficiency, scaling robustness and sufficiency, demonstrate their advantages.

Abstract Image

用于钢筋混凝土框架抗震评估的多模式和多级结构特定频谱烈度测量方法
针对远断层地震动下的平面钢筋混凝土抗弯框架,提出了两种新的结构特定标量强度测量方法。这些强度测量方法属于频谱加速度和频谱位移类型,具有多模式和多层次的特点。它们涵盖了前四个自然周期的影响,并针对四个性能等级进行了定义,包括对非弹性的考虑,直至预防倒塌等级。这是借助作者之前为基于性能的抗震设计目的而开发的等效线性模态阻尼比来实现的。这些模态阻尼比取决于周期、土壤类型和变形,与原始多自由度 (MDOF) 非线性结构转换为等效 MDOF 线性结构有关。所提出的强度测量方法概念简单而优雅,合理地结合了上述所有特征,无需人为组合术语、定义周期范围或添加由优化程序决定的系数。这种方法使其有别于试图考虑多种模式和非弹性的现有措施。从效率、实用性、熟练程度、扩展稳健性和充分性等方面,将所提出的强度测量方法与文献中现有的十种最流行的测量方法进行比较,证明了它们的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Earthquake Engineering
Bulletin of Earthquake Engineering 工程技术-地球科学综合
CiteScore
8.90
自引率
19.60%
发文量
263
审稿时长
7.5 months
期刊介绍: Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings. Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more. This is the Official Publication of the European Association for Earthquake Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信