Farzin Kazemi, Torkan Shafighfard, Robert Jankowski, Doo-Yeol Yoo
{"title":"Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete","authors":"Farzin Kazemi, Torkan Shafighfard, Robert Jankowski, Doo-Yeol Yoo","doi":"10.1007/s43452-024-01067-5","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional ultra-high performance concrete (UHPC) has excellent development potential. However, a significant quantity of CO<sub>2</sub> is produced throughout the cement-making process, which is in contrary to the current worldwide trend of lowering emissions and conserving energy, thus restricting the further advancement of UHPC. Considering climate change and sustainability concerns, cementless, eco-friendly, alkali-activated UHPC (AA-UHPC) materials have recently received considerable attention. Following the emergence of advanced prediction techniques aimed at reducing experimental tools and labor costs, this study provides a comparative study of different methods based on machine learning (ML) algorithms to propose an active learning-based ML model (AL-Stacked ML) for predicting the compressive strength of AA-UHPC. A data-rich framework containing 284 experimental datasets and 18 input parameters was collected. A comprehensive evaluation of the significance of input features that may affect compressive strength of AA-UHPC was performed. Results confirm that AL-Stacked ML-3 with accuracy of 98.9% can be used for different general experimental specimens, which have been tested in this research. Active learning can improve the accuracy up to 4.1% and further enhance the Stacked ML models. In addition, graphical user interface (GUI) was introduced and validated by experimental tests to facilitate comparable prospective studies and predictions.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43452-024-01067-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01067-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional ultra-high performance concrete (UHPC) has excellent development potential. However, a significant quantity of CO2 is produced throughout the cement-making process, which is in contrary to the current worldwide trend of lowering emissions and conserving energy, thus restricting the further advancement of UHPC. Considering climate change and sustainability concerns, cementless, eco-friendly, alkali-activated UHPC (AA-UHPC) materials have recently received considerable attention. Following the emergence of advanced prediction techniques aimed at reducing experimental tools and labor costs, this study provides a comparative study of different methods based on machine learning (ML) algorithms to propose an active learning-based ML model (AL-Stacked ML) for predicting the compressive strength of AA-UHPC. A data-rich framework containing 284 experimental datasets and 18 input parameters was collected. A comprehensive evaluation of the significance of input features that may affect compressive strength of AA-UHPC was performed. Results confirm that AL-Stacked ML-3 with accuracy of 98.9% can be used for different general experimental specimens, which have been tested in this research. Active learning can improve the accuracy up to 4.1% and further enhance the Stacked ML models. In addition, graphical user interface (GUI) was introduced and validated by experimental tests to facilitate comparable prospective studies and predictions.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.