A. J. Paleo, V. M. Serrato, J. M. Mánuel, O. Toledano, E. Muñoz, M. Melle-Franco, B. Krause, P. Pötschke, K. Lozano
{"title":"Doping Effect of Poly(vinylidene fluoride) on Carbon Nanofibers Deduced by Thermoelectric Analysis of Their Melt Mixed Films","authors":"A. J. Paleo, V. M. Serrato, J. M. Mánuel, O. Toledano, E. Muñoz, M. Melle-Franco, B. Krause, P. Pötschke, K. Lozano","doi":"10.1007/s10118-024-3200-y","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of temperature on the electrical conductivity (<i>σ</i>) and Seebeck coefficient (<i>S</i>) of n-type vapor grown carbon nanofibers (CNFs) and poly(vinylidene fluoride) (PVDF) melt-mixed with 15 wt% of those CNFs is analyzed. At 40 °C, the CNFs show stable n-type character (<i>S</i>=−4.8 µV·K<sup>−1</sup>) with an <i>σ</i> of <i>ca.</i>165 S·m<sup>−1</sup>, while the PVDF/CNF composite film shows an <i>σ</i> of <i>ca.</i> 9 S·m<sup>−1</sup> and near-zero <i>S</i> (<i>S</i>=−0.5 µV·K<sup>−1</sup>). This experimental reduction in <i>S</i> is studied by the density functional tight binding (DFTB) method revealing a contact electron transfer from the CNFs to the PVDF in the interface. Moreover, in the temperature range from 40 °C to 100 °C, the <i>σ</i>(<i>T</i>) of the CNFs and PVDF/CNF film, successfully described by the 3D variable range hopping (VRH) model, is explained as consequence of a thermally activated backscattering mechanism. On the contrary, the <i>S</i>(<i>T</i>) from 40 °C to 100 °C of the PVDF/CNF film, which satisfactorily matches the model proposed for some multi-walled carbon nanotube (MWCNT) doped mats; however, it does not follow the increase in <i>S</i>(<i>T</i>) found for CNFs. All these findings are presented with the aim of discerning the role of these n-type vapor grown carbon nanofibers on the <i>σ</i> and <i>S</i> of their melt-mixed polymer composites.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 11","pages":"1802 - 1810"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3200-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of temperature on the electrical conductivity (σ) and Seebeck coefficient (S) of n-type vapor grown carbon nanofibers (CNFs) and poly(vinylidene fluoride) (PVDF) melt-mixed with 15 wt% of those CNFs is analyzed. At 40 °C, the CNFs show stable n-type character (S=−4.8 µV·K−1) with an σ of ca.165 S·m−1, while the PVDF/CNF composite film shows an σ of ca. 9 S·m−1 and near-zero S (S=−0.5 µV·K−1). This experimental reduction in S is studied by the density functional tight binding (DFTB) method revealing a contact electron transfer from the CNFs to the PVDF in the interface. Moreover, in the temperature range from 40 °C to 100 °C, the σ(T) of the CNFs and PVDF/CNF film, successfully described by the 3D variable range hopping (VRH) model, is explained as consequence of a thermally activated backscattering mechanism. On the contrary, the S(T) from 40 °C to 100 °C of the PVDF/CNF film, which satisfactorily matches the model proposed for some multi-walled carbon nanotube (MWCNT) doped mats; however, it does not follow the increase in S(T) found for CNFs. All these findings are presented with the aim of discerning the role of these n-type vapor grown carbon nanofibers on the σ and S of their melt-mixed polymer composites.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.