Aimi Noorliyana Hashim, Mohd Arif Anuar Mohd Salleh, Muhammad Mahyiddin Ramli, Mohd Mustafa Al Bakri Abdullah, Andrei Victor Sandu, Petrica Vizureanu
{"title":"The behavior of Sn whisker growth on Sn-0.7Cu-0.05Ni solder joint during thermal cycling","authors":"Aimi Noorliyana Hashim, Mohd Arif Anuar Mohd Salleh, Muhammad Mahyiddin Ramli, Mohd Mustafa Al Bakri Abdullah, Andrei Victor Sandu, Petrica Vizureanu","doi":"10.1007/s10854-024-13805-9","DOIUrl":null,"url":null,"abstract":"<div><p>The present study investigates the behavior of Sn whisker growth on Sn-0.7Cu-0.05Ni solder joints during thermal cycling conducted for 1500 cycles at temperature of − 40 (+ 0/− 10) °C and + 85 (+ 10/− 0) °C through industry standard practices JESD22-A121A established by the Joint Electron Device Engineering Council (JEDEC). Results determine that the growth rate of Sn whisker on the Sn-0.7Cu-0.05Ni solder joint was slower than the Sn-0.7Cu solder joint and consequently show that the 0.05% addition of Ni is able to suppress the growth of Sn whisker during thermal cycling. Furthermore, the stabilization of hexagonal η-Cu<sub>6</sub>Sn<sub>5</sub> of (Cu,Ni)<sub>6</sub>Sn<sub>5</sub> IMC interfacial layer in Sn-0.7Cu-0.05Ni solder joints significantly contributes to a lower coefficient of thermal expansion (CTE) compared to Cu<sub>6</sub>Sn<sub>5</sub> IMC interfacial layer, thereby reducing thermal mismatch stress for Sn whisker growth on the Sn0.7Cu0.05Ni solder joint. The implications of this study are substantial for effective approach to mitigate Sn whiskers growth through consistent inspection protocols and adherence to industry standard practices.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13805-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The present study investigates the behavior of Sn whisker growth on Sn-0.7Cu-0.05Ni solder joints during thermal cycling conducted for 1500 cycles at temperature of − 40 (+ 0/− 10) °C and + 85 (+ 10/− 0) °C through industry standard practices JESD22-A121A established by the Joint Electron Device Engineering Council (JEDEC). Results determine that the growth rate of Sn whisker on the Sn-0.7Cu-0.05Ni solder joint was slower than the Sn-0.7Cu solder joint and consequently show that the 0.05% addition of Ni is able to suppress the growth of Sn whisker during thermal cycling. Furthermore, the stabilization of hexagonal η-Cu6Sn5 of (Cu,Ni)6Sn5 IMC interfacial layer in Sn-0.7Cu-0.05Ni solder joints significantly contributes to a lower coefficient of thermal expansion (CTE) compared to Cu6Sn5 IMC interfacial layer, thereby reducing thermal mismatch stress for Sn whisker growth on the Sn0.7Cu0.05Ni solder joint. The implications of this study are substantial for effective approach to mitigate Sn whiskers growth through consistent inspection protocols and adherence to industry standard practices.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.