Hidden Temperature in the KMP Model

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Anna de Masi, Pablo A. Ferrari, Davide Gabrielli
{"title":"Hidden Temperature in the KMP Model","authors":"Anna de Masi,&nbsp;Pablo A. Ferrari,&nbsp;Davide Gabrielli","doi":"10.1007/s10955-024-03363-z","DOIUrl":null,"url":null,"abstract":"<div><p>In the Kipnis Marchioro Presutti model a positive energy <span>\\(\\zeta _i\\)</span> is associated with each vertex <i>i</i> of a finite graph with a boundary. When a Poisson clock rings at an edge <i>ij</i> with energies <span>\\(\\zeta _i,\\zeta _j\\)</span>, those values are substituted by <span>\\(U(\\zeta _i+\\zeta _j)\\)</span> and <span>\\((1-U)(\\zeta _i+\\zeta _j)\\)</span>, respectively, where <i>U</i> is a uniform random variable in (0, 1). A value <span>\\(T_j\\ge 0\\)</span> is fixed at each boundary vertex <i>j</i>. The dynamics is defined in such way that the resulting Markov process <span>\\(\\zeta (t)\\)</span>, satisfies that <span>\\(\\zeta _j(t)\\)</span> is exponential with mean <span>\\(T_j\\)</span>, for each boundary vertex <i>j</i>, for all <i>t</i>. We show that the invariant measure is the distribution of a vector <span>\\(\\zeta \\)</span> with coordinates <span>\\(\\zeta _i=T_iX_i\\)</span>, where <span>\\(X_i\\)</span> are iid exponential(1) random variables, the law of <i>T</i> is the invariant measure for an opinion random averaging/gossip model with the same boundary conditions of <span>\\(\\zeta \\)</span>, and the vectors <i>X</i> and <i>T</i> are independent. The result confirms a conjecture based on the large deviations of the model. When the graph is one-dimensional, we bound the correlations of the invariant measure and perform the hydrostatic limit. We show that the empirical measure of a configuration chosen with the invariant measure converges to the linear interpolation of the boundary values.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"191 11","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03363-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the Kipnis Marchioro Presutti model a positive energy \(\zeta _i\) is associated with each vertex i of a finite graph with a boundary. When a Poisson clock rings at an edge ij with energies \(\zeta _i,\zeta _j\), those values are substituted by \(U(\zeta _i+\zeta _j)\) and \((1-U)(\zeta _i+\zeta _j)\), respectively, where U is a uniform random variable in (0, 1). A value \(T_j\ge 0\) is fixed at each boundary vertex j. The dynamics is defined in such way that the resulting Markov process \(\zeta (t)\), satisfies that \(\zeta _j(t)\) is exponential with mean \(T_j\), for each boundary vertex j, for all t. We show that the invariant measure is the distribution of a vector \(\zeta \) with coordinates \(\zeta _i=T_iX_i\), where \(X_i\) are iid exponential(1) random variables, the law of T is the invariant measure for an opinion random averaging/gossip model with the same boundary conditions of \(\zeta \), and the vectors X and T are independent. The result confirms a conjecture based on the large deviations of the model. When the graph is one-dimensional, we bound the correlations of the invariant measure and perform the hydrostatic limit. We show that the empirical measure of a configuration chosen with the invariant measure converges to the linear interpolation of the boundary values.

KMP 模型中隐藏的温度
在 Kipnis Marchioro Presutti 模型中,有边界的有限图的每个顶点 i 都有一个正能量 \(\zeta_i\)。当波松时钟在边 ij 上以能量 \(\zeta_i,\zeta_j\)响起时,这些值分别被 \(U(\zeta _i+\zeta _j)\) 和 \((1-U)(\zeta _i+\zeta _j)\)代替,其中 U 是(0,1)中的均匀随机变量。对于每个边界顶点 j,在所有 t 条件下,动态过程的定义是,由此产生的马尔可夫过程 \(\zeta(t)\)满足 \(\zeta_j(t)\)对于每个边界顶点 j 都是指数型的,均值为 \(T_j\)。我们证明不变度量是坐标为 \(\zeta _i=T_iX_i\) 的向量 \(\zeta _i=T_iX_i\) 的分布,其中 \(X_i\) 是 iid 指数(1) 随机变量,T 的规律是具有相同边界条件的 \(\zeta _i=T_iX_i\) 的意见随机平均/gossip 模型的不变度量,向量 X 和 T 是独立的。这一结果证实了基于模型大偏差的猜想。当图形为一维时,我们约束了不变度量的相关性,并进行了静力学极限。我们证明,用不变度量选择的配置的经验度量收敛于边界值的线性插值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信