{"title":"Critical slowing down features of acoustic emission signals for predicting the failure of black sandstone under different freezing temperatures","authors":"Zilong Zhou, Zhen Wang, Barkat Ullah","doi":"10.1007/s10064-024-03997-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the influence of sub-zero temperatures on the mechanical behavior and failure prediction of black sandstone. For this, quasi-static compression tests were conducted on black sandstone specimens under various temperatures, 5 °C, -5 °C, -10 °C, and − 20 °C. An acoustic emission (AE) monitoring technique was utilized to reveal the damage features of the rock at negative temperatures. The autocorrelation coefficient (AC) and variance of AE counts were assessed using the critical slowing down (CSD) theory to examine the precursor characteristics of rock failure under sub-zero temperatures. Further, the analysis of correlation dimension (CD) evolution was conducted to validate the results of CSD theory. The results indicate that as the temperature decreased from 5 °C to -20 °C, the uniaxial compressive strength (UCS) of the black sandstone increased by 43.09%. The AE counts, and cumulative counts effectively reflect the damage progression in the rock under compressive loading. The AE counts, and AE cumulative counts gradually rise with decreasing temperatures, indicating a more intense AE response. The AE signals associated with rock failure demonstrate CSD phenomena, where abrupt increases in the AC and variance curves of AE counts can be used to predict the ferocious failure. Furthermore, the findings show that the precursory time lag in black sandstone samples increases as the temperature decreases. Compared to CD and AC curves, the variance curve of AE counts provides a more distinct early warning feature for predicting rock failure under sub-zero temperatures. Consequently, this research holds significant implications for the prediction of rock failure in cold regions.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03997-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the influence of sub-zero temperatures on the mechanical behavior and failure prediction of black sandstone. For this, quasi-static compression tests were conducted on black sandstone specimens under various temperatures, 5 °C, -5 °C, -10 °C, and − 20 °C. An acoustic emission (AE) monitoring technique was utilized to reveal the damage features of the rock at negative temperatures. The autocorrelation coefficient (AC) and variance of AE counts were assessed using the critical slowing down (CSD) theory to examine the precursor characteristics of rock failure under sub-zero temperatures. Further, the analysis of correlation dimension (CD) evolution was conducted to validate the results of CSD theory. The results indicate that as the temperature decreased from 5 °C to -20 °C, the uniaxial compressive strength (UCS) of the black sandstone increased by 43.09%. The AE counts, and cumulative counts effectively reflect the damage progression in the rock under compressive loading. The AE counts, and AE cumulative counts gradually rise with decreasing temperatures, indicating a more intense AE response. The AE signals associated with rock failure demonstrate CSD phenomena, where abrupt increases in the AC and variance curves of AE counts can be used to predict the ferocious failure. Furthermore, the findings show that the precursory time lag in black sandstone samples increases as the temperature decreases. Compared to CD and AC curves, the variance curve of AE counts provides a more distinct early warning feature for predicting rock failure under sub-zero temperatures. Consequently, this research holds significant implications for the prediction of rock failure in cold regions.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.