Susceptible-Infectious-Susceptible Epidemic Model with Symmetrical Fluctuations: Equilibrium States and Stability Analyses for Finite Systems

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Paulo S. Adami, Olavo H. Menin, Alexandre S. Martinez
{"title":"Susceptible-Infectious-Susceptible Epidemic Model with Symmetrical Fluctuations: Equilibrium States and Stability Analyses for Finite Systems","authors":"Paulo S. Adami,&nbsp;Olavo H. Menin,&nbsp;Alexandre S. Martinez","doi":"10.1007/s10441-024-09490-0","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate prediction of epidemic evolution faces challenges such as understanding disease dynamics and inadequate epidemiological data. A recent approach faced these issues by modeling susceptible-infectious-susceptible (SIS) dynamics based on the first two statistical moments. Here, we improve this approach by including finite-size populations and analyzing the stability of the resulting model. Results underscore the influence of uncertainties and population size in the natural history of the epidemic.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-024-09490-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of epidemic evolution faces challenges such as understanding disease dynamics and inadequate epidemiological data. A recent approach faced these issues by modeling susceptible-infectious-susceptible (SIS) dynamics based on the first two statistical moments. Here, we improve this approach by including finite-size populations and analyzing the stability of the resulting model. Results underscore the influence of uncertainties and population size in the natural history of the epidemic.

Abstract Image

具有对称波动的易感-传染-易感流行病模型:有限系统的平衡状态和稳定性分析
准确预测流行病的演变面临着各种挑战,如了解疾病动态和流行病学数据不足。面对这些问题,最近的一种方法是基于前两个统计矩建立易感-传染-易感(SIS)动态模型。在此,我们改进了这一方法,纳入了有限规模的种群,并分析了由此产生的模型的稳定性。结果强调了不确定性和种群规模对流行病自然史的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信