In situ exsolved Fe nanoparticles enhance the catalytic performance of perovskite cathode materials in solid oxide electrolytic cells

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Shiwen He, Xuewei He and Lizhen Gan
{"title":"In situ exsolved Fe nanoparticles enhance the catalytic performance of perovskite cathode materials in solid oxide electrolytic cells","authors":"Shiwen He, Xuewei He and Lizhen Gan","doi":"10.1039/D4NJ03794D","DOIUrl":null,"url":null,"abstract":"<p >Global CO<small><sub>2</sub></small> concentrations were reported to exceed 419.3 ppm in 2023, a 51% increase from pre-industrial levels, and emissions will reach 37.4 billion tons. The concomitant rise in global temperature resulting from the increase in atmospheric CO<small><sub>2</sub></small> concentration is precipitating a series of unprecedented challenges to global ecosystems. The development of innovative technologies mitigating the effects of climate change is of paramount importance. The solid oxide electrolytic cell (SOEC) represents a promising avenue for future CO<small><sub>2</sub></small> resource utilization within the context of electrocatalytic conversion technology. We have employed the exceptional electronic conductivity and redox stability of the La<small><sub>0.7</sub></small>Sr<small><sub>0.3</sub></small>CrO<small><sub>3−<em>δ</em></sub></small> substrate to enhance the efficacy of the electrolysis process. A series of La<small><sub>0.7</sub></small>Sr<small><sub>0.3</sub></small>CrFe<small><sub><em>X</em></sub></small>O<small><sub>3−<em>δ</em></sub></small> (LSCF<small><sub><em>X</em></sub></small>, <em>X</em> = 0, 0.025, 0.05, 0.075, 0.1) were prepared by fine-tuning the iron doping at the B-site <em>via</em> glycine liquid phase combustion. The LSCF<small><sub>0.075</sub></small> samples exhibited promising results in CO<small><sub>2</sub></small> electrolysis, with a CO yield of 5.25 mL min<small><sup>−1</sup></small> cm<small><sup>−2</sup></small> and a current efficiency of 98.12%. This represents a 4.25-fold improvement over the undoped LSC. It is noteworthy that LSCF<small><sub>0.075</sub></small> demonstrated exceptional catalytic stability after 50 hours of continuous operation at a high temperature. The industrialization of high-temperature CO<small><sub>2</sub></small> electrolysis technology hinges on the development of efficient and stable electrode materials. This study offers promising insights in this regard.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 44","pages":" 18739-18745"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj03794d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Global CO2 concentrations were reported to exceed 419.3 ppm in 2023, a 51% increase from pre-industrial levels, and emissions will reach 37.4 billion tons. The concomitant rise in global temperature resulting from the increase in atmospheric CO2 concentration is precipitating a series of unprecedented challenges to global ecosystems. The development of innovative technologies mitigating the effects of climate change is of paramount importance. The solid oxide electrolytic cell (SOEC) represents a promising avenue for future CO2 resource utilization within the context of electrocatalytic conversion technology. We have employed the exceptional electronic conductivity and redox stability of the La0.7Sr0.3CrO3−δ substrate to enhance the efficacy of the electrolysis process. A series of La0.7Sr0.3CrFeXO3−δ (LSCFX, X = 0, 0.025, 0.05, 0.075, 0.1) were prepared by fine-tuning the iron doping at the B-site via glycine liquid phase combustion. The LSCF0.075 samples exhibited promising results in CO2 electrolysis, with a CO yield of 5.25 mL min−1 cm−2 and a current efficiency of 98.12%. This represents a 4.25-fold improvement over the undoped LSC. It is noteworthy that LSCF0.075 demonstrated exceptional catalytic stability after 50 hours of continuous operation at a high temperature. The industrialization of high-temperature CO2 electrolysis technology hinges on the development of efficient and stable electrode materials. This study offers promising insights in this regard.

Abstract Image

原位外溶解铁纳米粒子可提高过氧化物阴极材料在固体氧化物电解池中的催化性能
据报道,2023 年全球二氧化碳浓度将超过 419.3 ppm,比工业化前水平增加 51%,排放量将达到 374 亿吨。大气中二氧化碳浓度的增加导致全球气温随之升高,给全球生态系统带来了一系列前所未有的挑战。开发可减轻气候变化影响的创新技术至关重要。在电催化转化技术方面,固体氧化物电解池(SOEC)是未来利用二氧化碳资源的一条大有可为的途径。我们利用 La0.7Sr0.3CrO3-δ 衬底卓越的电子传导性和氧化还原稳定性来提高电解过程的功效。通过甘氨酸液相燃烧微调 B 位的铁掺杂,制备了一系列 La0.7Sr0.3CrFeXO3-δ(LSCFX,X = 0、0.025、0.05、0.075、0.1)。LSCF0.075 样品在二氧化碳电解中表现出良好的效果,二氧化碳产率为 5.25 mL min-1 cm-2,电流效率为 98.12%。这比未掺杂的 LSC 提高了 4.25 倍。值得注意的是,LSCF0.075 在高温下连续工作 50 小时后,表现出了卓越的催化稳定性。高温二氧化碳电解技术的工业化取决于高效稳定电极材料的开发。本研究在这方面提供了很有前景的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信