{"title":"A Lattice-Based Method for Recovering the Unknown Parameters of Truncated Multiple Recursive Generators with Constant","authors":"Hanbing Yu;Qunxiong Zheng","doi":"10.23919/cje.2022.00.387","DOIUrl":null,"url":null,"abstract":"Multiple recursive generators with constant, as the high-order extension of linear congruence generators, form an important class of pseudorandom number generators that are widely used in cryptography. The predictability of truncated sequences output by multiple recursive generators with constant that predicts the whole sequences by the truncated high-order bits of the sequences, is a crucial problem in cryptography. This paper studies the predictability of truncated multiple recursive generators with constant. Given a few truncated digits of high-order bits output by a multiple recursive generator with constant, we first convert the multiple recursive generator with constant to multiple recursive generator and then adopt the method we proposed recently to recover the modulus, the coefficients, and the differences of initial state. In particular, we give an estimation of the number of truncated digits required for recovering the differences of initial state by using the expected norm of target vector. We prove by exponential sums that the number of truncated digits required for uniquely determining both the initial state and the constant is finite and give an upper bound. Extensive experiments confirm the correctness of our method.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"33 6","pages":"1458-1467"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10748545","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10748545/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple recursive generators with constant, as the high-order extension of linear congruence generators, form an important class of pseudorandom number generators that are widely used in cryptography. The predictability of truncated sequences output by multiple recursive generators with constant that predicts the whole sequences by the truncated high-order bits of the sequences, is a crucial problem in cryptography. This paper studies the predictability of truncated multiple recursive generators with constant. Given a few truncated digits of high-order bits output by a multiple recursive generator with constant, we first convert the multiple recursive generator with constant to multiple recursive generator and then adopt the method we proposed recently to recover the modulus, the coefficients, and the differences of initial state. In particular, we give an estimation of the number of truncated digits required for recovering the differences of initial state by using the expected norm of target vector. We prove by exponential sums that the number of truncated digits required for uniquely determining both the initial state and the constant is finite and give an upper bound. Extensive experiments confirm the correctness of our method.
期刊介绍:
CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.