FMR-GNet: Forward Mix-Hop Spatial-Temporal Residual Graph Network for 3D Pose Estimation

IF 1.6 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Honghong Yang;Hongxi Liu;Yumei Zhang;Xiaojun Wu
{"title":"FMR-GNet: Forward Mix-Hop Spatial-Temporal Residual Graph Network for 3D Pose Estimation","authors":"Honghong Yang;Hongxi Liu;Yumei Zhang;Xiaojun Wu","doi":"10.23919/cje.2022.00.365","DOIUrl":null,"url":null,"abstract":"Graph convolutional networks that leverage spatial-temporal information from skeletal data have emerged as a popular approach for 3D human pose estimation. However, comprehensively modeling consistent spatial-temporal dependencies among the body joints remains a challenging task. Current approaches are limited by performing graph convolutions solely on immediate neighbors, deploying separate spatial or temporal modules, and utilizing single-pass feedforward architectures. To solve these limitations, we propose a forward multi-scale residual graph convolutional network (FMR-GNet) for 3D pose estimation from monocular video. First, we introduce a mix-hop spatial-temporal attention graph convolution layer that effectively aggregates neighboring features with learnable weights over large receptive fields. The attention mechanism enables dynamically computing edge weights at each layer. Second, we devise a cross-domain spatial-temporal residual module to fuse multi-scale spatial-temporal convolutional features through residual connections, explicitly modeling interdependencies across spatial and temporal domains. Third, we integrate a forward dense connection block to propagate spatial-temporal representations across network layers, enabling high-level semantic skeleton information to enrich lower-level features. Comprehensive experiments conducted on two challenging 3D human pose estimation benchmarks, namely Human3.6M and MPI-INF-3DHP, demonstrate that the proposed FMR-GNet achieves superior performance, surpassing the most state-of-the-art methods.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"33 6","pages":"1346-1359"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10748551","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10748551/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Graph convolutional networks that leverage spatial-temporal information from skeletal data have emerged as a popular approach for 3D human pose estimation. However, comprehensively modeling consistent spatial-temporal dependencies among the body joints remains a challenging task. Current approaches are limited by performing graph convolutions solely on immediate neighbors, deploying separate spatial or temporal modules, and utilizing single-pass feedforward architectures. To solve these limitations, we propose a forward multi-scale residual graph convolutional network (FMR-GNet) for 3D pose estimation from monocular video. First, we introduce a mix-hop spatial-temporal attention graph convolution layer that effectively aggregates neighboring features with learnable weights over large receptive fields. The attention mechanism enables dynamically computing edge weights at each layer. Second, we devise a cross-domain spatial-temporal residual module to fuse multi-scale spatial-temporal convolutional features through residual connections, explicitly modeling interdependencies across spatial and temporal domains. Third, we integrate a forward dense connection block to propagate spatial-temporal representations across network layers, enabling high-level semantic skeleton information to enrich lower-level features. Comprehensive experiments conducted on two challenging 3D human pose estimation benchmarks, namely Human3.6M and MPI-INF-3DHP, demonstrate that the proposed FMR-GNet achieves superior performance, surpassing the most state-of-the-art methods.
FMR-GNet:用于三维姿态估计的前向混合跳转时空残差图网络
利用骨骼数据中的时空信息的图卷积网络已成为三维人体姿态估计的一种流行方法。然而,全面建模身体关节间一致的时空依赖关系仍然是一项具有挑战性的任务。目前的方法局限于仅对近邻进行图卷积、部署单独的空间或时间模块以及使用单通道前馈架构。为了解决这些局限性,我们提出了一种前向多尺度残差图卷积网络(FMR-GNet),用于从单目视频中进行三维姿态估计。首先,我们引入了一个混合跳转的时空注意力图卷积层,它能有效地将邻近特征与可学习的权重聚合在大型感受野上。这种注意力机制可以动态计算每一层的边缘权重。其次,我们设计了一个跨域时空残差模块,通过残差连接融合多尺度时空卷积特征,明确模拟跨时空域的相互依存关系。第三,我们整合了一个前向密集连接块,以跨网络层传播时空表征,从而使高层语义骨架信息能够丰富低层特征。在两个具有挑战性的三维人体姿态估计基准(即 Human3.6M 和 MPI-INF-3DHP)上进行的综合实验表明,所提出的 FMR-GNet 实现了卓越的性能,超越了最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Electronics
Chinese Journal of Electronics 工程技术-工程:电子与电气
CiteScore
3.70
自引率
16.70%
发文量
342
审稿时长
12.0 months
期刊介绍: CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信