Flexible multifunctional MXene@Ag nanowires/cotton fabric inspired by transport of nutrients by roots for electromagnetic shielding, infrared stealth, Joule/solar heating and flame retardancy
{"title":"Flexible multifunctional MXene@Ag nanowires/cotton fabric inspired by transport of nutrients by roots for electromagnetic shielding, infrared stealth, Joule/solar heating and flame retardancy","authors":"Jiatong Yan, Meimei Chen, Rui Tan, Chuanxi Lin, Shan Jiang, Weijie Wang, Songyue Pan, Hongyan Xiao, Erhui Ren, Ronghui Guo","doi":"10.1039/d4ta06712f","DOIUrl":null,"url":null,"abstract":"With the rapid development of 5G communication technology and intelligent detection technology, electromagnetic shielding/infrared stealth fabrics with Joule/solar heating performance can meet the needs of wearable electronic devices for multi-application scenarios. Two-dimensional (2D) transition metal carbides and nitrides (MXenes) are ideal candidates for constructing efficient conductive networks in EMI SE fabrics due to their layered structure and high conductivity. However, it is difficult for MXene nanosheets to assemble into excellent interconnected conductive networks due to the irregular size and stacking of MXene sheets after MXene etching. Inspired by transport of nutrients by roots, a three-dimensional (3D) efficient conductive network was constructed by bridging one-dimensional (1D) Ag nanowires (AgNWs) into the highly conductive 2D MXenes, and a series of flexible multifunctional MXene@AgNW/cotton fabrics with excellent EMI SE performance was obtained. The average EMI SE value of MXene@AgNW/cotton fabrics can reach 70.6 dB in the X band. The oxidation resistance of the fabric is enhanced after spraying perfluorooctyltriethoxysilane (PFOTES) on the surface, and the surface water contact angle reaches 135.1°, providing excellent self-cleaning performance. MXene@AgNW/cotton fabric exhibits an average infrared emissivity of 0.25 (3–5 μm) and 0.17 (8–14 μm), showing excellent camouflage capability for infrared thermal signals under an infrared camera, generating a temperature difference of about 132.2 °C with a hot stage at 200 °C. MXene@AgNW/cotton fabric shows good electrical heating performance under low voltage loading (temperature reaches 150 °C at 3.5 V) and it also exhibits photothermal properties, showing a temperature of 120 °C under light density irradiation of 1900 W m<small><sup>−2</sup></small> within 180 s, which can realize the functions of hot compress therapy and cold preservation. The limiting oxygen index (LOI) value of MXene@AgNW/cotton fabric is 27.5%, which proves that MXene@AgNW/cotton fabric exhibits fire safety in practical applications. This work provides a paradigm for the construction of flexible multifunctional EMI SE fabrics.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"2 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta06712f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of 5G communication technology and intelligent detection technology, electromagnetic shielding/infrared stealth fabrics with Joule/solar heating performance can meet the needs of wearable electronic devices for multi-application scenarios. Two-dimensional (2D) transition metal carbides and nitrides (MXenes) are ideal candidates for constructing efficient conductive networks in EMI SE fabrics due to their layered structure and high conductivity. However, it is difficult for MXene nanosheets to assemble into excellent interconnected conductive networks due to the irregular size and stacking of MXene sheets after MXene etching. Inspired by transport of nutrients by roots, a three-dimensional (3D) efficient conductive network was constructed by bridging one-dimensional (1D) Ag nanowires (AgNWs) into the highly conductive 2D MXenes, and a series of flexible multifunctional MXene@AgNW/cotton fabrics with excellent EMI SE performance was obtained. The average EMI SE value of MXene@AgNW/cotton fabrics can reach 70.6 dB in the X band. The oxidation resistance of the fabric is enhanced after spraying perfluorooctyltriethoxysilane (PFOTES) on the surface, and the surface water contact angle reaches 135.1°, providing excellent self-cleaning performance. MXene@AgNW/cotton fabric exhibits an average infrared emissivity of 0.25 (3–5 μm) and 0.17 (8–14 μm), showing excellent camouflage capability for infrared thermal signals under an infrared camera, generating a temperature difference of about 132.2 °C with a hot stage at 200 °C. MXene@AgNW/cotton fabric shows good electrical heating performance under low voltage loading (temperature reaches 150 °C at 3.5 V) and it also exhibits photothermal properties, showing a temperature of 120 °C under light density irradiation of 1900 W m−2 within 180 s, which can realize the functions of hot compress therapy and cold preservation. The limiting oxygen index (LOI) value of MXene@AgNW/cotton fabric is 27.5%, which proves that MXene@AgNW/cotton fabric exhibits fire safety in practical applications. This work provides a paradigm for the construction of flexible multifunctional EMI SE fabrics.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.