Physical Isolation of Single Protein Molecules within Well-Defined Coordination Cages to Enhance Their Stability

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Risa Ebihara, Takahiro Nakama, Ken Morishima, Maho Yagi-Utsumi, Masaaki Sugiyama, Daishi Fujita, Sota Sato, Makoto Fujita
{"title":"Physical Isolation of Single Protein Molecules within Well-Defined Coordination Cages to Enhance Their Stability","authors":"Risa Ebihara, Takahiro Nakama, Ken Morishima, Maho Yagi-Utsumi, Masaaki Sugiyama, Daishi Fujita, Sota Sato, Makoto Fujita","doi":"10.1002/anie.202419476","DOIUrl":null,"url":null,"abstract":"Encapsulation of a single protein within a confined space can lead to distinct properties compared to bulk solutions, but controlling the number of encapsulated proteins and their environment remains challenging. This study demonstrates the encapsulation of single proteins within well-defined, tunable cavities of self-assembled coordination cages, thereby enhancing protein stability. Within uniform cavities of size-tunable coordination cages, 15 different proteins of varying sizes (3-6 nm in diameter) and properties (e.g., isoelectric points and hydrophobicity) were successfully confined. Various analytical techniques confirmed that the proteins maintained their secondary structures and enzymatic activities under denaturing conditions such as exposure to organic solvents, heat, and buffers. These findings suggest that such coordination cages have the potential to serve as synthetic hosts for precisely controlling protein functions within their customizable cavities.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"29 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202419476","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Encapsulation of a single protein within a confined space can lead to distinct properties compared to bulk solutions, but controlling the number of encapsulated proteins and their environment remains challenging. This study demonstrates the encapsulation of single proteins within well-defined, tunable cavities of self-assembled coordination cages, thereby enhancing protein stability. Within uniform cavities of size-tunable coordination cages, 15 different proteins of varying sizes (3-6 nm in diameter) and properties (e.g., isoelectric points and hydrophobicity) were successfully confined. Various analytical techniques confirmed that the proteins maintained their secondary structures and enzymatic activities under denaturing conditions such as exposure to organic solvents, heat, and buffers. These findings suggest that such coordination cages have the potential to serve as synthetic hosts for precisely controlling protein functions within their customizable cavities.
在定义明确的配位笼中物理分离单个蛋白质分子以增强其稳定性
与块状溶液相比,将单个蛋白质封装在一个密闭空间内可产生不同的特性,但控制封装蛋白质的数量及其环境仍具有挑战性。本研究展示了在自组装配位笼定义明确、可调的空腔内封装单个蛋白质,从而提高蛋白质的稳定性。在尺寸可调配位笼的均匀空腔内,成功地封装了 15 种不同尺寸(直径 3-6 纳米)和性质(如等电点和疏水性)的蛋白质。各种分析技术证实,这些蛋白质在变性条件下(如暴露于有机溶剂、热和缓冲液中)仍能保持其二级结构和酶活性。这些发现表明,这种配位笼有可能作为合成宿主,在其可定制的空腔内精确控制蛋白质的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信