Yangyang Wang, Chunxia Chen, Ao Xu, Jiaxin Lv, Miao Huang, Tiantian Ren, Jinbo Bai, Hui Wang, Xiaojie Liu
{"title":"Oriented and Continuous Phase Epitaxy Enabled by A Highly Dendrite-Resistant Plane Toward Super-High Areal Capacity Zinc Metal Batteries","authors":"Yangyang Wang, Chunxia Chen, Ao Xu, Jiaxin Lv, Miao Huang, Tiantian Ren, Jinbo Bai, Hui Wang, Xiaojie Liu","doi":"10.1002/aenm.202404071","DOIUrl":null,"url":null,"abstract":"Unstable Zn metal anodes with dendrites/side reactions are becoming the main obstacle to the practical application of zinc-based aqueous batteries. Epitaxial growth has been considered to be an effective strategy for solving these issues, especially for inducing the (002) plane growth. Nonetheless, the (002)-textured Zn is difficult to achieve highly stable Zn anode under high capacity resulting from its large lattice distortion. Herein, the Cu single atom anchored polymeric carbon nitride (Cu@PCN) is synthesized by a facile thermal polymerization method. Serving as multifunctional protective layer on Zn surface, the Cu@PCN can provide massive nucleation sites at a nano-level and uniformize the electron distribution through coordination engineering. Optimizing the coordination structures of single Cu and N atoms within the carbon matrix enables a redistribution for electric field and regulates ion flux. More importantly, this coordination strategy with single atoms is first reported to customize oriented and continuous phase epitaxy along highly dendrite-resistant Zn(101) plane by reducing (101) surface energy. This pattern of oriented dense deposition leads to stable and reversible Zn plating/stripping is achieved, which delivers an extended cycling life of 550 h at 10 A cm<sup>−2</sup>, 20 mAh cm<sup>−2</sup>. The practical full cell also displays stable performance for 1200 cycles.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404071","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Unstable Zn metal anodes with dendrites/side reactions are becoming the main obstacle to the practical application of zinc-based aqueous batteries. Epitaxial growth has been considered to be an effective strategy for solving these issues, especially for inducing the (002) plane growth. Nonetheless, the (002)-textured Zn is difficult to achieve highly stable Zn anode under high capacity resulting from its large lattice distortion. Herein, the Cu single atom anchored polymeric carbon nitride (Cu@PCN) is synthesized by a facile thermal polymerization method. Serving as multifunctional protective layer on Zn surface, the Cu@PCN can provide massive nucleation sites at a nano-level and uniformize the electron distribution through coordination engineering. Optimizing the coordination structures of single Cu and N atoms within the carbon matrix enables a redistribution for electric field and regulates ion flux. More importantly, this coordination strategy with single atoms is first reported to customize oriented and continuous phase epitaxy along highly dendrite-resistant Zn(101) plane by reducing (101) surface energy. This pattern of oriented dense deposition leads to stable and reversible Zn plating/stripping is achieved, which delivers an extended cycling life of 550 h at 10 A cm−2, 20 mAh cm−2. The practical full cell also displays stable performance for 1200 cycles.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.