{"title":"Two-Sided Cellular and Physiological Effects of Zinc Oxide Nanoparticles (nZnO): A Critical Review","authors":"Anqi Sun, Shuoli Ma, Wen-Xiong Wang","doi":"10.1039/d4en00676c","DOIUrl":null,"url":null,"abstract":"Advances and applications of nanotechnology inevitably lead to the release of nanoparticles (NPs) into the environment, particularly zinc oxide nanoparticles (nZnO). This review focuses on the toxic and nutritional effects of nZnO at both cellular and physiological levels, as well as the corresponding molecular mechanisms involved. Understanding the cellular transport and dissolution characteristics of nZnO is essential to elucidate its potential toxicity mechanisms. Excess nZnO is absorbed into tissues and accumulates in cells, ultimately resulting in physiological inhibition, nutritional imbalances, and oxidative stress. Conversely, an appropriate amount of nZnO may enhance homeostasis at the organ level, induce moderate production of reactive oxygen species (ROS), and activate changes in antioxidant genes and KEGG pathways, thereby improving the anti-stress capacity of organisms. We also examine the fate of nZnO in marine fishes at the physiological and molecular levels. The effects of nZnO exposure are complex, exhibiting both potential mitigation and toxicity. While excessive use of nZnO poses ecological risks, a judiciously designed application of nZnO holds promise for various fields, including marine fish farming. The regulatory role of nZnO in fish organs, such as viscera and liver, provides new insights into the mechanisms underlying its benefits at the individual level, informing strategies to minimize risks while maximizing benefits.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"9 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00676c","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Advances and applications of nanotechnology inevitably lead to the release of nanoparticles (NPs) into the environment, particularly zinc oxide nanoparticles (nZnO). This review focuses on the toxic and nutritional effects of nZnO at both cellular and physiological levels, as well as the corresponding molecular mechanisms involved. Understanding the cellular transport and dissolution characteristics of nZnO is essential to elucidate its potential toxicity mechanisms. Excess nZnO is absorbed into tissues and accumulates in cells, ultimately resulting in physiological inhibition, nutritional imbalances, and oxidative stress. Conversely, an appropriate amount of nZnO may enhance homeostasis at the organ level, induce moderate production of reactive oxygen species (ROS), and activate changes in antioxidant genes and KEGG pathways, thereby improving the anti-stress capacity of organisms. We also examine the fate of nZnO in marine fishes at the physiological and molecular levels. The effects of nZnO exposure are complex, exhibiting both potential mitigation and toxicity. While excessive use of nZnO poses ecological risks, a judiciously designed application of nZnO holds promise for various fields, including marine fish farming. The regulatory role of nZnO in fish organs, such as viscera and liver, provides new insights into the mechanisms underlying its benefits at the individual level, informing strategies to minimize risks while maximizing benefits.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis