H. Gao, D. Zhou, A. Tatomir, K. Li, L. Ganzer, P. Jaeger, G. Brenner, M. Sauter
{"title":"Estimation of Recovery Efficiency in High-Temperature Aquifer Thermal Energy Storage Considering Buoyancy Flow","authors":"H. Gao, D. Zhou, A. Tatomir, K. Li, L. Ganzer, P. Jaeger, G. Brenner, M. Sauter","doi":"10.1029/2024wr037491","DOIUrl":null,"url":null,"abstract":"With their high storage capacity and energy efficiency as well as the compatibilities with renewable energy sources, high-temperature aquifer thermal energy storage (HT-ATES) systems are frequently the target today in the design of temporally and spatially balanced and continuous energy supply systems. The inherent density-driven buoyancy flow is of greater importance with HT-ATES, which may lead to a lower thermal recovery efficiency than conventional low-temperature ATES. In this study, the governing equations for HT-ATES considering buoyancy flow are nondimensionalized, and four key dimensionless parameters regarding thermal recovery efficiency are determined. Then, using numerical simulations, recovery efficiency for a sweep of the key dimensionless parameters for multiple cycles and storage volumes is examined. Ranges of the key dimensionless parameters for the three displacement regimes, that is, a buoyancy-dominated regime, a conduction-dominated regime, and a transition regime, are identified. In the buoyancy-dominated regime, recovery efficiency is mainly correlated to the ratio between the Rayleigh number and the Peclet number. In the conduction-dominated regime, recovery efficiency is mainly correlated to the product of a material-related parameter and the Peclet number. Multivariable regression functions are provided to estimate recovery efficiency using the dimensionless parameters. The recovery efficiency estimated by the regression function shows good agreement with the simulation results. Additionally, well screen designs for optimizing recovery efficiency at various degrees of intensity of buoyancy flow are investigated. The findings of this study can be used for a quick assessment and characterization of the potential HT-ATES systems based on the geological and operational parameters.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"7 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr037491","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
With their high storage capacity and energy efficiency as well as the compatibilities with renewable energy sources, high-temperature aquifer thermal energy storage (HT-ATES) systems are frequently the target today in the design of temporally and spatially balanced and continuous energy supply systems. The inherent density-driven buoyancy flow is of greater importance with HT-ATES, which may lead to a lower thermal recovery efficiency than conventional low-temperature ATES. In this study, the governing equations for HT-ATES considering buoyancy flow are nondimensionalized, and four key dimensionless parameters regarding thermal recovery efficiency are determined. Then, using numerical simulations, recovery efficiency for a sweep of the key dimensionless parameters for multiple cycles and storage volumes is examined. Ranges of the key dimensionless parameters for the three displacement regimes, that is, a buoyancy-dominated regime, a conduction-dominated regime, and a transition regime, are identified. In the buoyancy-dominated regime, recovery efficiency is mainly correlated to the ratio between the Rayleigh number and the Peclet number. In the conduction-dominated regime, recovery efficiency is mainly correlated to the product of a material-related parameter and the Peclet number. Multivariable regression functions are provided to estimate recovery efficiency using the dimensionless parameters. The recovery efficiency estimated by the regression function shows good agreement with the simulation results. Additionally, well screen designs for optimizing recovery efficiency at various degrees of intensity of buoyancy flow are investigated. The findings of this study can be used for a quick assessment and characterization of the potential HT-ATES systems based on the geological and operational parameters.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.