Jiang Qianqian, Wang He, Yang Kaiguang, Zhao Baofeng, Liang Zhen, Zhang Yukui, Jiang Bo, Zhang Lihua
{"title":"2D Nano-Photosensitizer Facilitates Proximity Labeling for Living Cells Surfaceome Deciphering","authors":"Jiang Qianqian, Wang He, Yang Kaiguang, Zhao Baofeng, Liang Zhen, Zhang Yukui, Jiang Bo, Zhang Lihua","doi":"10.1002/smll.202407240","DOIUrl":null,"url":null,"abstract":"Photocatalytic proximity labeling has shown great promise for mapping the spatiotemporal dynamics of surfaceome. Although cell-surface targeting photosensitizers relying on antibodies, lipid molecules, and metabolic labeling have gained effects, the development of simpler and stable methods that avoid complex chemical synthesis and biosynthesis steps is still a huge challenge. Here, the study has introduced 2D nanomaterials with the ability of cell surface engineering to perform the in situ anchoring of photosensitizer on living cell surface. Photosensitizer can be stabilized on nanomaterials by coordination after one-step mixing, resulting in the nano-photosensitizer combining cell surface targeting ability and photosensitivity that allowing surface-specific proximity labeling. Nano-photosensitizer can be dispersed stably in aqueous solution, avoiding the defects of poor water solubility and aggregation of traditional organic photosensitizers. Singlet oxygen is generated locally under light irradiation, enabling spatiotemporally-resolved activating and labeling of cell surface proteome. Further application in the brain metastatic lung cancer has been found effective with numerous quantified differential cell surfaces proteins highly correlated with cancer metastasis and three potential players have been validated via immunoblotting and immunofluorescence, providing important insights for metastasis supported molecular mechanism.","PeriodicalId":228,"journal":{"name":"Small","volume":"61 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407240","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalytic proximity labeling has shown great promise for mapping the spatiotemporal dynamics of surfaceome. Although cell-surface targeting photosensitizers relying on antibodies, lipid molecules, and metabolic labeling have gained effects, the development of simpler and stable methods that avoid complex chemical synthesis and biosynthesis steps is still a huge challenge. Here, the study has introduced 2D nanomaterials with the ability of cell surface engineering to perform the in situ anchoring of photosensitizer on living cell surface. Photosensitizer can be stabilized on nanomaterials by coordination after one-step mixing, resulting in the nano-photosensitizer combining cell surface targeting ability and photosensitivity that allowing surface-specific proximity labeling. Nano-photosensitizer can be dispersed stably in aqueous solution, avoiding the defects of poor water solubility and aggregation of traditional organic photosensitizers. Singlet oxygen is generated locally under light irradiation, enabling spatiotemporally-resolved activating and labeling of cell surface proteome. Further application in the brain metastatic lung cancer has been found effective with numerous quantified differential cell surfaces proteins highly correlated with cancer metastasis and three potential players have been validated via immunoblotting and immunofluorescence, providing important insights for metastasis supported molecular mechanism.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.