{"title":"A Zea genus-specific micropeptide controls kernel dehydration in maize","authors":"Yanhui Yu, Wenqiang Li, Yuanfang Liu, Yanjun Liu, Qinzhi Zhang, Yidan Ouyang, Wenya Ding, Yu Xue, Yilin Zou, Junjun Yan, Anqiang Jia, Jiali Yan, Xinfei Hao, Yujie Gou, Zhaowei Zhai, Longyu Liu, Yang Zheng, Bao Zhang, Jieting Xu, Ning Yang, Jianbing Yan","doi":"10.1016/j.cell.2024.10.030","DOIUrl":null,"url":null,"abstract":"Kernel dehydration rate (KDR) is a crucial production trait that affects mechanized harvesting and kernel quality in maize; however, the underlying mechanisms remain unclear. Here, we identified a quantitative trait locus (QTL), <em>qKDR1</em>, as a non-coding sequence that regulates the expression of <em>qKDR1 REGULATED PEPTIDE GENE</em> (<em>RPG</em>). <em>RPG</em> encodes a 31 amino acid micropeptide, microRPG1, which controls KDR by precisely modulating the expression of two genes, <em>ZmETHYLENE-INSENSITIVE3-like 1</em> and <em>3</em>, in the ethylene signaling pathway in the kernels after filling. microRPG1 is a <em>Zea</em> genus-specific micropeptide and originated <em>de novo</em> from a non-coding sequence. Knockouts of microRPG1 result in faster KDR in maize. By contrast, overexpression or exogenous application of the micropeptide shows the opposite effect both in maize and <em>Arabidopsis</em>. Our findings reveal the molecular mechanism of microRPG1 in kernel dehydration and provide an important tool for future crop breeding.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"51 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.10.030","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Kernel dehydration rate (KDR) is a crucial production trait that affects mechanized harvesting and kernel quality in maize; however, the underlying mechanisms remain unclear. Here, we identified a quantitative trait locus (QTL), qKDR1, as a non-coding sequence that regulates the expression of qKDR1 REGULATED PEPTIDE GENE (RPG). RPG encodes a 31 amino acid micropeptide, microRPG1, which controls KDR by precisely modulating the expression of two genes, ZmETHYLENE-INSENSITIVE3-like 1 and 3, in the ethylene signaling pathway in the kernels after filling. microRPG1 is a Zea genus-specific micropeptide and originated de novo from a non-coding sequence. Knockouts of microRPG1 result in faster KDR in maize. By contrast, overexpression or exogenous application of the micropeptide shows the opposite effect both in maize and Arabidopsis. Our findings reveal the molecular mechanism of microRPG1 in kernel dehydration and provide an important tool for future crop breeding.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.