Tailored pore-confined single-site iron(III) catalyst for selective CH4 oxidation to CH3OH or CH3CO2H using O2

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Manav Chauhan, Bharti Rana, Poorvi Gupta, Rahul Kalita, Chhaya Thadhani, Kuntal Manna
{"title":"Tailored pore-confined single-site iron(III) catalyst for selective CH4 oxidation to CH3OH or CH3CO2H using O2","authors":"Manav Chauhan, Bharti Rana, Poorvi Gupta, Rahul Kalita, Chhaya Thadhani, Kuntal Manna","doi":"10.1038/s41467-024-54101-8","DOIUrl":null,"url":null,"abstract":"<p>Direct oxidation of methane to valuable oxygenates like alcohols and acetic acid under mild conditions poses a significant challenge due to high C‒H bond dissociation energy, facile overoxidation to CO and CO<sub>2</sub> and the intricacy of C−H activation/C−C coupling. In this work, we develop a multifunctional iron(III) dihydroxyl catalytic species immobilized within a metal-organic framework (MOF) for selective methane oxidation into methanol or acetic acid at different reaction conditions using O<sub>2</sub>. The active-site isolation of monomeric Fe<sup>III</sup>(OH)<sub>2</sub> species at the MOF nodes, their confinement within the porous framework, and their electron-deficient nature facilitate chemoselective C‒H oxidation, yielding methanol or acetic acid with high productivities of <span>\\(38,592\\,\\upmu {{{\\rm{mol}}}}_{{{{\\rm{CH}}}}_{3}{{\\rm{OH}}}}{{{{\\rm{g}}}}_{{{\\rm{Fe}}}}}^{-1}{{{\\rm{h}}}}^{-1}\\)</span> and <span>\\(81,043\\,\\upmu {{{\\rm{mol}}}}_{{{{\\rm{CH}}}}_{3}{{{\\rm{CO}}}}_{2}{{\\rm{H}}}}{{{{\\rm{g}}}}_{{{\\rm{Fe}}}}}^{-1}{{{\\rm{h}}}}^{-1}\\)</span>, respectively. Experiments and theoretical calculations suggest that methanol formation occurs via a Fe<sup>III</sup>-Fe<sup>I</sup>-Fe<sup>III</sup> catalytic cycle, whereas CH<sub>3</sub>CO<sub>2</sub>H is produced via hydrocarboxylation of in-situ generated CH<sub>3</sub>OH with CO<sub>2</sub> and H<sub>2</sub>, and direct CH<sub>4</sub> carboxylation with CO<sub>2</sub>.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"95 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54101-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Direct oxidation of methane to valuable oxygenates like alcohols and acetic acid under mild conditions poses a significant challenge due to high C‒H bond dissociation energy, facile overoxidation to CO and CO2 and the intricacy of C−H activation/C−C coupling. In this work, we develop a multifunctional iron(III) dihydroxyl catalytic species immobilized within a metal-organic framework (MOF) for selective methane oxidation into methanol or acetic acid at different reaction conditions using O2. The active-site isolation of monomeric FeIII(OH)2 species at the MOF nodes, their confinement within the porous framework, and their electron-deficient nature facilitate chemoselective C‒H oxidation, yielding methanol or acetic acid with high productivities of \(38,592\,\upmu {{{\rm{mol}}}}_{{{{\rm{CH}}}}_{3}{{\rm{OH}}}}{{{{\rm{g}}}}_{{{\rm{Fe}}}}}^{-1}{{{\rm{h}}}}^{-1}\) and \(81,043\,\upmu {{{\rm{mol}}}}_{{{{\rm{CH}}}}_{3}{{{\rm{CO}}}}_{2}{{\rm{H}}}}{{{{\rm{g}}}}_{{{\rm{Fe}}}}}^{-1}{{{\rm{h}}}}^{-1}\), respectively. Experiments and theoretical calculations suggest that methanol formation occurs via a FeIII-FeI-FeIII catalytic cycle, whereas CH3CO2H is produced via hydrocarboxylation of in-situ generated CH3OH with CO2 and H2, and direct CH4 carboxylation with CO2.

Abstract Image

利用 O2 将 CH4 选择性氧化为 CH3OH 或 CH3CO2H 的定制孔隙封闭型单位铁(III)催化剂
由于 C-H 键解离能高、容易过氧化成 CO 和 CO2 以及 C-H 活化/C-C 偶联的复杂性,在温和条件下将甲烷直接氧化成醇和醋酸等有价值的含氧化合物是一项重大挑战。在这项工作中,我们开发了一种固定在金属有机框架(MOF)中的多功能二羟基铁催化剂,用于在不同的反应条件下使用氧气将甲烷选择性地氧化成甲醇或乙酸。单体 FeⅢ(OH)2 物种在 MOF 节点上的活性位点分离、它们在多孔框架内的限制以及它们的缺电子性质促进了化学选择性 C-H 氧化,生成甲醇或醋酸,其生产率高达 38、592\,\upmu {{{\rm{mol}}}}_{{{{\rm{CH}}}}_{3}{{\rm{OH}}}}{{{{\rm{g}}}}_{{{\rm{Fe}}}}}^{-1}{{{\rm{h}}}}^{-1}\) and \(81,043\,\upmu {{{\rm{mol}}}}_{{{{\rm{CH}}}}_{3}{{{\rm{CO}}}}_{2}{{\rm{H}}}}{{{{\rm{g}}}}_{{{\rm{Fe}}}}}^{-1}{{{\rm{h}}}}^{-1}\), respectively.实验和理论计算表明,甲醇是通过 FeIII-FeI-FeIII 催化循环生成的,而 CH3CO2H 则是通过原位生成的 CH3OH 与 CO2 和 H2 发生羧化反应以及 CH4 与 CO2 直接发生羧化反应生成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信