{"title":"A Primer on Stochastic Partial Differential Equations with Spatially Correlated Noise","authors":"Katherine A. Newhall","doi":"10.1146/annurev-conmatphys-042624-033003","DOIUrl":null,"url":null,"abstract":"With the growing number of microscale devices from computer memory to microelectromechanical systems, such as lab-on-a-chip biosensors and the increased ability to experimentally measure at the micro- and nanoscale, modeling systems with stochastic processes is a growing need across science. In particular, stochastic partial differential equations (SPDEs) naturally arise from continuum models—for example, a pillar magnet's magnetization or an elastic membrane's mechanical deflection. In this review, I seek to acquaint the reader with SPDEs from the point of view of numerically simulating their finite-difference approximations, without the rigorous mathematical details of assigning probability measures to the random field solutions. I will stress that these simulations with spatially uncorrelated noise may not converge as the grid size goes to zero in the way that one expects from deterministic convergence of numerical schemes in two or more spatial dimensions. I then present some models with spatially correlated noise that maintain sampling of the physically relevant equilibrium distribution. Numerical simulations are presented to demonstrate the dynamics; the code is publicly available on GitHub.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"4 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-042624-033003","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
With the growing number of microscale devices from computer memory to microelectromechanical systems, such as lab-on-a-chip biosensors and the increased ability to experimentally measure at the micro- and nanoscale, modeling systems with stochastic processes is a growing need across science. In particular, stochastic partial differential equations (SPDEs) naturally arise from continuum models—for example, a pillar magnet's magnetization or an elastic membrane's mechanical deflection. In this review, I seek to acquaint the reader with SPDEs from the point of view of numerically simulating their finite-difference approximations, without the rigorous mathematical details of assigning probability measures to the random field solutions. I will stress that these simulations with spatially uncorrelated noise may not converge as the grid size goes to zero in the way that one expects from deterministic convergence of numerical schemes in two or more spatial dimensions. I then present some models with spatially correlated noise that maintain sampling of the physically relevant equilibrium distribution. Numerical simulations are presented to demonstrate the dynamics; the code is publicly available on GitHub.
期刊介绍:
Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.