The accelerating universe in a noncommutative analytically continued foliated quantum gravity

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
César A Zen Vasconcellos, Peter O Hess, José de Freitas Pacheco, Fridolin Weber, Benno Bodmann, Dimiter Hadjimichef, Geovane Naysinger, Marcelo Netz-Marzola and Moisés Razeira
{"title":"The accelerating universe in a noncommutative analytically continued foliated quantum gravity","authors":"César A Zen Vasconcellos, Peter O Hess, José de Freitas Pacheco, Fridolin Weber, Benno Bodmann, Dimiter Hadjimichef, Geovane Naysinger, Marcelo Netz-Marzola and Moisés Razeira","doi":"10.1088/1361-6382/ad8b93","DOIUrl":null,"url":null,"abstract":"Based on an analytically continued Riemannian foliated quantum gravity super-Hamiltonian, known as branch cut quantum gravity (BCQG) we propose a novel approach to investigating the effects of noncommutative geometry on a minisuperspace of variables, influencing the acceleration behavior of the Universe’s wave function and the cosmic scale factor. Noncommutativity is introduced through a deformation of the conventional Poisson algebra, enhanced with a symplectic metric. The resulting symplectic manifold provides a natural setting that enables an isomorphism between canonically conjugate dual vector spaces, spanning the BCQG cosmic scale factor and its complementary quantum counterpart. Using this formulation, we describe the dynamic evolution of the Universe’s wave function, the cosmic scale factor, and its complementary quantum image. Our results strongly suggest that the noncommutative algebra induces late-time accelerated growth of the wave function, the Universe’s scale factor, and its complementary quantum counterpart, offering a new perspective on explaining the accelerating cosmic expansion rate and the inflationary period. In contrast to the inflationary model, where inflation requires a remarkably fine-tuned set of initial conditions in a patch of the Universe, analytically continued non-commutative foliated quantum gravity captures short and long scales, driving the evolutionary dynamics of the Universe through a reconfiguration of the primordial cosmic content of matter and energy. This reconfiguration is encapsulated into a quantum field potential, which leads to the generation of relic gravitational waves, a topic for future investigation. Graphical representations and contour plots indicate a characteristic torsion (or twist) deformation of spacetime geometry. This result introduces new speculative elements regarding the reconfiguration of matter and energy as a driver of spacetime torsion deformation, generating relic gravitational waves and serving as an alternative topological mechanism for the Universe’s acceleration. However, these assumptions require further investigation.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"71 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad8b93","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Based on an analytically continued Riemannian foliated quantum gravity super-Hamiltonian, known as branch cut quantum gravity (BCQG) we propose a novel approach to investigating the effects of noncommutative geometry on a minisuperspace of variables, influencing the acceleration behavior of the Universe’s wave function and the cosmic scale factor. Noncommutativity is introduced through a deformation of the conventional Poisson algebra, enhanced with a symplectic metric. The resulting symplectic manifold provides a natural setting that enables an isomorphism between canonically conjugate dual vector spaces, spanning the BCQG cosmic scale factor and its complementary quantum counterpart. Using this formulation, we describe the dynamic evolution of the Universe’s wave function, the cosmic scale factor, and its complementary quantum image. Our results strongly suggest that the noncommutative algebra induces late-time accelerated growth of the wave function, the Universe’s scale factor, and its complementary quantum counterpart, offering a new perspective on explaining the accelerating cosmic expansion rate and the inflationary period. In contrast to the inflationary model, where inflation requires a remarkably fine-tuned set of initial conditions in a patch of the Universe, analytically continued non-commutative foliated quantum gravity captures short and long scales, driving the evolutionary dynamics of the Universe through a reconfiguration of the primordial cosmic content of matter and energy. This reconfiguration is encapsulated into a quantum field potential, which leads to the generation of relic gravitational waves, a topic for future investigation. Graphical representations and contour plots indicate a characteristic torsion (or twist) deformation of spacetime geometry. This result introduces new speculative elements regarding the reconfiguration of matter and energy as a driver of spacetime torsion deformation, generating relic gravitational waves and serving as an alternative topological mechanism for the Universe’s acceleration. However, these assumptions require further investigation.
非交换解析持续叶状量子引力中的加速宇宙
我们提出了一种新颖的方法来研究非交换性几何对变量超小空间的影响,它影响着宇宙波函数的加速行为和宇宙尺度因子。非交换性是通过传统泊松代数的变形引入的,并用交映度量进行了增强。由此产生的交错流形提供了一个自然的环境,使典型共轭对偶向量空间之间能够同构,跨越 BCQG 宇宙尺度因子及其互补量子对应物。利用这一表述,我们描述了宇宙波函数、宇宙尺度因子及其互补量子图像的动态演化。我们的结果有力地表明,非交换代数诱导了波函数、宇宙尺度因子及其互补量子对应物的晚期加速增长,为解释加速宇宙膨胀率和暴胀期提供了一个新的视角。暴胀模型要求在宇宙的某一片区域设置一套非常微调的初始条件,与之相反,分析延续的非交换叶状量子引力捕捉到了短尺度和长尺度,通过物质和能量的原始宇宙内容的重新配置来驱动宇宙的演化动力学。这种重构被囊括进量子场势中,从而产生了遗迹引力波,这也是未来研究的一个课题。图形表示和等高线图显示了时空几何的扭转(或扭曲)变形特征。这一结果引入了新的推测元素,即物质和能量的重新配置是时空扭转变形的驱动力,会产生遗迹引力波,并成为宇宙加速的另一种拓扑机制。不过,这些假设还需要进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信