ReaL-MGE is a tool for enhanced multiplex genome engineering and application to malonyl-CoA anabolism

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Wentao Zheng, Yuxuan Wang, Jie Cui, Guangyao Guo, Yufeng Li, Jin Hou, Qiang Tu, Yulong Yin, Francis Stewart, Youming Zhang, Xiaoying Bian, Xue Wang
{"title":"ReaL-MGE is a tool for enhanced multiplex genome engineering and application to malonyl-CoA anabolism","authors":"Wentao Zheng, Yuxuan Wang, Jie Cui, Guangyao Guo, Yufeng Li, Jin Hou, Qiang Tu, Yulong Yin, Francis Stewart, Youming Zhang, Xiaoying Bian, Xue Wang","doi":"10.1038/s41467-024-54191-4","DOIUrl":null,"url":null,"abstract":"<p>The complexities encountered in microbial metabolic engineering continue to elude prediction and design. Unravelling these complexities requires strategies that go beyond conventional genetics. Using multiplex mutagenesis with double stranded (ds) DNA, we extend the multiplex repertoire previously pioneered using single strand (ss) oligonucleotides. We present ReaL-MGE (<u>Re</u>combineering <u>a</u>nd <u>L</u>inear CRISPR/Cas9 assisted <u>M</u>ultiplex <u>G</u>enome <u>E</u>ngineering). ReaL-MGE enables precise manipulation of numerous large DNA sequences as demonstrated by the simultaneous insertion of multiple kilobase-scale sequences into <i>E. coli</i>, <i>Schlegelella brevitalea</i> and <i>Pseudomonas putida</i> genomes without any off-target errors. ReaL-MGE applications to enhance intracellular malonyl-CoA levels in these three genomes achieved 26-, 20-, and 13.5-fold elevations respectively, thereby promoting target polyketide yields by more than an order of magnitude. In a further round of ReaL-MGE, we adapt <i>S. brevitalea</i> to malonyl-CoA elevation utilizing a restricted carbon source (lignocellulose from straw) to realize production of the anti-cancer secondary metabolite, epothilone from lignocellulose. Multiplex mutagenesis with dsDNA enables the incorporation of lengthy segments that can fully encode additional functions. Additionally, the utilization of PCR to generate the dsDNAs brings flexible design advantages. ReaL-MGE presents strategic options in microbial metabolic engineering.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54191-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The complexities encountered in microbial metabolic engineering continue to elude prediction and design. Unravelling these complexities requires strategies that go beyond conventional genetics. Using multiplex mutagenesis with double stranded (ds) DNA, we extend the multiplex repertoire previously pioneered using single strand (ss) oligonucleotides. We present ReaL-MGE (Recombineering and Linear CRISPR/Cas9 assisted Multiplex Genome Engineering). ReaL-MGE enables precise manipulation of numerous large DNA sequences as demonstrated by the simultaneous insertion of multiple kilobase-scale sequences into E. coli, Schlegelella brevitalea and Pseudomonas putida genomes without any off-target errors. ReaL-MGE applications to enhance intracellular malonyl-CoA levels in these three genomes achieved 26-, 20-, and 13.5-fold elevations respectively, thereby promoting target polyketide yields by more than an order of magnitude. In a further round of ReaL-MGE, we adapt S. brevitalea to malonyl-CoA elevation utilizing a restricted carbon source (lignocellulose from straw) to realize production of the anti-cancer secondary metabolite, epothilone from lignocellulose. Multiplex mutagenesis with dsDNA enables the incorporation of lengthy segments that can fully encode additional functions. Additionally, the utilization of PCR to generate the dsDNAs brings flexible design advantages. ReaL-MGE presents strategic options in microbial metabolic engineering.

Abstract Image

ReaL-MGE 是一种增强型多重基因组工程工具,可应用于丙二酰辅酶的合成代谢
微生物代谢工程中遇到的复杂问题仍然无法预测和设计。解开这些复杂性需要超越传统遗传学的策略。通过使用双链(ds)DNA 进行多重诱变,我们扩展了之前率先使用单链(ss)寡核苷酸进行的多重诱变。我们推出了 ReaL-MGE(重组和线性 CRISPR/Cas9 辅助多重基因组工程)。ReaL-MGE 可以精确操作大量大型 DNA 序列,将多个千碱基级序列同时插入大肠杆菌、Schlegelella brevitalea 和 Pseudomonas putida 的基因组中就证明了这一点,而且不会出现任何脱靶错误。应用 ReaL-MGE 提高这三个基因组中细胞内丙二酰-CoA 的含量分别提高了 26 倍、20 倍和 13.5 倍,从而使目标多酮产量提高了一个数量级以上。在 ReaL-MGE 的另一轮研究中,我们利用限制性碳源(秸秆中的木质纤维素)使 S. brevitalea 适应丙二酰-CoA 的提高,从而实现了从木质纤维素中生产抗癌二级代谢物表皮杉酮。使用 dsDNA 进行多重诱变,可以加入能完全编码附加功能的长片段。此外,利用 PCR 生成 dsDNA 还能带来灵活的设计优势。ReaL-MGE 为微生物代谢工程提供了战略选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信