Eugene Kim, Sungsoon Kim, Yongchul Kim, Kiran Hamkins, Jihyun Baek, MinJoong Kim, Tae‐Kyung Liu, Young Moon Choi, Jung Hwan Lee, Gyu Yong Jang, Kug‐Seung Lee, Geunsik Lee, Xiaolin Zheng, Jong Hyeok Park
{"title":"Activation of Hidden Catalytic Sites in 2D Basal Plane via p–n Heterojunction Interface Engineering Toward Efficient Oxygen Evolution Reaction","authors":"Eugene Kim, Sungsoon Kim, Yongchul Kim, Kiran Hamkins, Jihyun Baek, MinJoong Kim, Tae‐Kyung Liu, Young Moon Choi, Jung Hwan Lee, Gyu Yong Jang, Kug‐Seung Lee, Geunsik Lee, Xiaolin Zheng, Jong Hyeok Park","doi":"10.1002/aenm.202403722","DOIUrl":null,"url":null,"abstract":"Nonprecious metal‐based 2D materials have shown promising electrocatalytic activity toward the oxygen evolution reaction (OER). However, the catalytically active sites of 2D materials are mainly presented at the edge, and most of their basal planes are still catalytically inactive, which turns into a significant drawback on the catalytic efficiency. Here, a novel p–n heterojunction strategy is suggested that generates active sites on the basal plane of 2D NiFe‐layered double hydroxide (NiFe‐LDH). The n‐type NiFe‐LDH is first grown on a nickel foam (NF) substrate, and p‐type Co<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> nanocubes are deposited through a simple dip‐coating method to fabricate a Co<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>/NiFe‐LDH@NF p–n heterojunction electrode. As a result, electron transfer is induced at the interface of p‐type Co<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> and n‐type NiFe‐LDH, which consequently promotes oxidation of the inert Ni<jats:sup>2+</jats:sup> state to a more catalytically active Ni<jats:sup>3+</jats:sup> state on the inert basal plane of NiFe‐LDH. As‐prepared Co<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>/NiFe‐LDH@NF electrodes obtained enhanced OER performance showing a high current density of 100 mA cm<jats:sup>−2</jats:sup> at 1.48 V (vs RHE) which outperforms that of pristine NiFe‐LDH@NF. The utilization of the p–n junction concept will disclose a new strategy for modifying the electronic structure of the catalytically inactive basal plane and stimulating its electrocatalytic activity.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"16 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403722","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nonprecious metal‐based 2D materials have shown promising electrocatalytic activity toward the oxygen evolution reaction (OER). However, the catalytically active sites of 2D materials are mainly presented at the edge, and most of their basal planes are still catalytically inactive, which turns into a significant drawback on the catalytic efficiency. Here, a novel p–n heterojunction strategy is suggested that generates active sites on the basal plane of 2D NiFe‐layered double hydroxide (NiFe‐LDH). The n‐type NiFe‐LDH is first grown on a nickel foam (NF) substrate, and p‐type Co3O4 nanocubes are deposited through a simple dip‐coating method to fabricate a Co3O4/NiFe‐LDH@NF p–n heterojunction electrode. As a result, electron transfer is induced at the interface of p‐type Co3O4 and n‐type NiFe‐LDH, which consequently promotes oxidation of the inert Ni2+ state to a more catalytically active Ni3+ state on the inert basal plane of NiFe‐LDH. As‐prepared Co3O4/NiFe‐LDH@NF electrodes obtained enhanced OER performance showing a high current density of 100 mA cm−2 at 1.48 V (vs RHE) which outperforms that of pristine NiFe‐LDH@NF. The utilization of the p–n junction concept will disclose a new strategy for modifying the electronic structure of the catalytically inactive basal plane and stimulating its electrocatalytic activity.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.