The quantization of Maxwell theory in the Cauchy radiation gauge: Hodge decomposition and Hadamard states

IF 1 2区 数学 Q1 MATHEMATICS
Simone Murro, Gabriel Schmid
{"title":"The quantization of Maxwell theory in the Cauchy radiation gauge: Hodge decomposition and Hadamard states","authors":"Simone Murro,&nbsp;Gabriel Schmid","doi":"10.1112/jlms.70020","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to prove the existence of Hadamard states for the Maxwell equations on any globally hyperbolic spacetime. This will be achieved by introducing a new gauge fixing condition, the <i>Cauchy radiation gauge</i>, that will allow to suppress all the unphysical degrees of freedom. The key ingredient for achieving this gauge is a new Hodge decomposition for differential <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-forms in Sobolev spaces on complete (possibly noncompact) Riemannian manifolds.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70020","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to prove the existence of Hadamard states for the Maxwell equations on any globally hyperbolic spacetime. This will be achieved by introducing a new gauge fixing condition, the Cauchy radiation gauge, that will allow to suppress all the unphysical degrees of freedom. The key ingredient for achieving this gauge is a new Hodge decomposition for differential k $k$ -forms in Sobolev spaces on complete (possibly noncompact) Riemannian manifolds.

Abstract Image

考奇辐射规中麦克斯韦理论的量子化:霍奇分解与哈达玛态
本文旨在证明麦克斯韦方程在任何全局双曲时空中的哈达玛德状态的存在性。这将通过引入一种新的量规固定条件--考奇辐射量规来实现,该量规可以抑制所有非物理自由度。实现这一量规的关键要素是完整(可能非紧凑)黎曼流形上索博列夫空间中微分 k $k$ 形式的新霍奇分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信