Plasma-Synthesized Combined Nitrogen and Cationic Species Doped-MnO2: Impact on Texture, Optical Properties, and Photocatalytic Activity

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL
Franck W. Boyom-Tatchemo, Albert Poupi, François Devred, Elie Acayanka, Georges Kamgang-Youbi, Carmela Aprile, Samuel Laminsi, Eric M. Gaigneaux
{"title":"Plasma-Synthesized Combined Nitrogen and Cationic Species Doped-MnO2: Impact on Texture, Optical Properties, and Photocatalytic Activity","authors":"Franck W. Boyom-Tatchemo,&nbsp;Albert Poupi,&nbsp;François Devred,&nbsp;Elie Acayanka,&nbsp;Georges Kamgang-Youbi,&nbsp;Carmela Aprile,&nbsp;Samuel Laminsi,&nbsp;Eric M. Gaigneaux","doi":"10.1007/s10562-024-04834-4","DOIUrl":null,"url":null,"abstract":"<div><p>This work explored the possibility of doping MnO<sub>2</sub> structure simultaneously by cationic (Na<sup>+</sup>, Mg<sup>2+</sup> or K<sup>+</sup>) and nitrogen species during its synthesis through gliding arc plasma route. Therefore, NaMnO<sub>4</sub>, Mg(MnO<sub>4</sub>)<sub>2</sub> or KMnO<sub>4</sub> precursor has been precipitated via plasmachemical reduction thanks to NO⋅ and NO<sub>2</sub><sup>−</sup> respectively being short and long-lived species generated in plasma plume (gas phase) and plasma post-discharge (liquid phase). Physicochemical characterizations revealed nanostructured NaN–MnO<sub>2</sub>, MgN–MnO<sub>2</sub> and KN–MnO<sub>2</sub> respectively with specific surface areas of 36, 110 and 116 m<sup>2</sup>/g, nitrogen atomic loading at surface of 0.6, 1.0 and 1.5%, and band gap values of 1.20, 1.30 and 1.45 eV. The three precursors with different cationic species allowed different nitrogen loading for their respective plasma-synthesized MnO<sub>2</sub>, which led to the different values of band gap energy. An increase of the N-loading induced an increase of band gap energy and enlarged the absorption capability of MnO<sub>2</sub> from visible light to the UV region. Solar photocatalytic removal of TY revealed bleaching degrees of 53, 97 and 94% respectively for NaN–MnO<sub>2</sub>, MgN–MnO<sub>2</sub> and KN–MnO<sub>2</sub> materials. This enlargement, together with the increased specific surface area of the plasma-synthesized N–MnO<sub>2</sub>, led synergistically to an enhancement of its photocatalytic activity. This work highlights the usefulness of the synthesis via glidarc plasma, without any additional reagent, of MnO<sub>2</sub>, as allowing cationic species insertion in their structure, and simultaneously their doping with different N-loading, so leading to different crystalline structures, and photocatalytic activities.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04834-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work explored the possibility of doping MnO2 structure simultaneously by cationic (Na+, Mg2+ or K+) and nitrogen species during its synthesis through gliding arc plasma route. Therefore, NaMnO4, Mg(MnO4)2 or KMnO4 precursor has been precipitated via plasmachemical reduction thanks to NO⋅ and NO2 respectively being short and long-lived species generated in plasma plume (gas phase) and plasma post-discharge (liquid phase). Physicochemical characterizations revealed nanostructured NaN–MnO2, MgN–MnO2 and KN–MnO2 respectively with specific surface areas of 36, 110 and 116 m2/g, nitrogen atomic loading at surface of 0.6, 1.0 and 1.5%, and band gap values of 1.20, 1.30 and 1.45 eV. The three precursors with different cationic species allowed different nitrogen loading for their respective plasma-synthesized MnO2, which led to the different values of band gap energy. An increase of the N-loading induced an increase of band gap energy and enlarged the absorption capability of MnO2 from visible light to the UV region. Solar photocatalytic removal of TY revealed bleaching degrees of 53, 97 and 94% respectively for NaN–MnO2, MgN–MnO2 and KN–MnO2 materials. This enlargement, together with the increased specific surface area of the plasma-synthesized N–MnO2, led synergistically to an enhancement of its photocatalytic activity. This work highlights the usefulness of the synthesis via glidarc plasma, without any additional reagent, of MnO2, as allowing cationic species insertion in their structure, and simultaneously their doping with different N-loading, so leading to different crystalline structures, and photocatalytic activities.

Graphical Abstract

Abstract Image

等离子体合成的掺杂氮和阳离子的二氧化锰:对质地、光学特性和光催化活性的影响
这项研究探索了在通过滑弧等离子体途径合成 MnO2 的过程中同时掺入阳离子(Na+、Mg2+ 或 K+)和氮元素的可能性。因此,NaMnO4、Mg(MnO4)2 或 KMnO4 前驱体通过等离子体化学还原沉淀,而 NO⋅ 和 NO2- 分别是等离子体羽流(气相)和等离子体放电后(液相)中产生的短寿命和长寿命物种。物理化学特征显示,纳米结构的 NaN-MnO2、MgN-MnO2 和 KN-MnO2 的比表面积分别为 36、110 和 116 m2/g,表面氮原子负载分别为 0.6、1.0 和 1.5%,带隙值分别为 1.20、1.30 和 1.45 eV。具有不同阳离子种类的三种前驱体可使各自等离子体合成的二氧化锰具有不同的氮负荷,从而导致不同的带隙能值。氮负载量的增加会导致带隙能的增加,并使二氧化锰的吸收能力从可见光扩大到紫外区。太阳能光催化去除 TY 的结果显示,NaN-MnO2、MgN-MnO2 和 KN-MnO2 材料的漂白度分别为 53%、97% 和 94%。这种扩大与等离子体合成的 N-MnO2 比表面积的增加一起,协同增强了其光催化活性。这项工作凸显了通过滑弧等离子体合成 MnO2 的实用性,无需任何额外试剂,就能在其结构中插入阳离子物种,同时掺入不同的 N 负荷,从而产生不同的晶体结构和光催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Letters
Catalysis Letters 化学-物理化学
CiteScore
5.70
自引率
3.60%
发文量
327
审稿时长
1 months
期刊介绍: Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis. The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信