Young Hwan Bae, Yu-Rhee Ahn, Yubin Jun, Hong Jae Yim
{"title":"Evaluating the effect of retarder on cement hydration and setting delay under hot weather curing condition using non-destructive methods","authors":"Young Hwan Bae, Yu-Rhee Ahn, Yubin Jun, Hong Jae Yim","doi":"10.1617/s11527-024-02496-7","DOIUrl":null,"url":null,"abstract":"<div><p>Hot weather concreting has gained significant attention in recent years due to the increasing annual mean temperature. The accelerated hydration process under high temperature curing conditions can lead to premature hydration products, therefore, retarding admixtures are recommended to control the setting time. Various non-destructive methods were analyzed to estimate the setting time of cement-based materials. However, the evaluation of delayed cement hydration with added retarding admixtures has not been reported. This study aims to monitor the two non-destructive methods, electrical resistivity and ultrasonic pulse velocity, during the initial 24 h in cement pastes with added calcium lignosulfonate, the most common retarder. The setting time of cement pastes, cured at temperatures of 20, 30, and 40 ℃, was evaluated based on the rise time of these non-destructive measurements. Further, the effect of added retarder on the setting delay in cement paste was discussed and compared with the Vicat needle test. The results of X-ray diffraction and thermogravimetric analysis at the rising time of electrical resistivity revealed that the use of the retarding admixture induces delayed hydration reaction of C<sub>3</sub>S, C<sub>2</sub>S, and C<sub>3</sub>A, key hydration products influencing the setting delay.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"57 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02496-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hot weather concreting has gained significant attention in recent years due to the increasing annual mean temperature. The accelerated hydration process under high temperature curing conditions can lead to premature hydration products, therefore, retarding admixtures are recommended to control the setting time. Various non-destructive methods were analyzed to estimate the setting time of cement-based materials. However, the evaluation of delayed cement hydration with added retarding admixtures has not been reported. This study aims to monitor the two non-destructive methods, electrical resistivity and ultrasonic pulse velocity, during the initial 24 h in cement pastes with added calcium lignosulfonate, the most common retarder. The setting time of cement pastes, cured at temperatures of 20, 30, and 40 ℃, was evaluated based on the rise time of these non-destructive measurements. Further, the effect of added retarder on the setting delay in cement paste was discussed and compared with the Vicat needle test. The results of X-ray diffraction and thermogravimetric analysis at the rising time of electrical resistivity revealed that the use of the retarding admixture induces delayed hydration reaction of C3S, C2S, and C3A, key hydration products influencing the setting delay.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.