Wenwen Yang, Xiaojuan Lai, Lei Wang, Huaqiang Shi, Haibin Li, Jiali Chen, Xin Wen, Yulong Li, Xiaojiang Song, Wenfei Wang
{"title":"Dynamic properties of microspheres at the nanoscale and mechanisms for their application in enhanced oil recovery","authors":"Wenwen Yang, Xiaojuan Lai, Lei Wang, Huaqiang Shi, Haibin Li, Jiali Chen, Xin Wen, Yulong Li, Xiaojiang Song, Wenfei Wang","doi":"10.1007/s10965-024-04187-x","DOIUrl":null,"url":null,"abstract":"<div><p>A carbamate surfactant was synthesized using octadecanol polyoxyethylene ether(AEO) and isocyanatoethyl methacrylate(IEM) as functional monomers. Subsequently, active-carbamate-surfactant-modified PER nanomicrospheres were prepared through two-phase aqueous dispersion polymerization, utilizing acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), and ethylene glycol dimethacrylate (EGDMA) as raw materials. The microstructures and properties of the nanomicrospheres were characterized and examined using infrared spectroscopy, nanolaser particle size analysis, thermogravimetric analysis, scanning electron microscopy, rheometry, rotating drop ultra-low interfacial tensiometry, and core-driven experiments. The results revealed that the synthesized PER nanomicrospheres exhibit a uniform particle size distribution, with an average particle size of 336 nm. Furthermore, the nanomicrospheres exhibit a thermal decomposition temperature of 278℃, demonstrating good thermal stability. The nanomicrospheres also exhibit favorable expansion and viscoelastic properties. Upon the injection of 3wt.% of the PER nanomicrospheres into a non-homogeneous core, the blocking rate (η) reaches 90.32%, while the recovery rate increases by 30.2%. This improvement is attributed to the unique structural design of the nanomicrospheres, allowing them to form a thin film at the three-phase oil–water-rock interface and promoting oil emulsification and stripping. Overall, the PER nanomicrospheres effectively control fluid dynamics within reservoirs, mitigate the loss of oil and gas resources, enhance the economic benefits of oil and gas fields, and thus demonstrate good application prospects.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"31 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04187-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A carbamate surfactant was synthesized using octadecanol polyoxyethylene ether(AEO) and isocyanatoethyl methacrylate(IEM) as functional monomers. Subsequently, active-carbamate-surfactant-modified PER nanomicrospheres were prepared through two-phase aqueous dispersion polymerization, utilizing acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), and ethylene glycol dimethacrylate (EGDMA) as raw materials. The microstructures and properties of the nanomicrospheres were characterized and examined using infrared spectroscopy, nanolaser particle size analysis, thermogravimetric analysis, scanning electron microscopy, rheometry, rotating drop ultra-low interfacial tensiometry, and core-driven experiments. The results revealed that the synthesized PER nanomicrospheres exhibit a uniform particle size distribution, with an average particle size of 336 nm. Furthermore, the nanomicrospheres exhibit a thermal decomposition temperature of 278℃, demonstrating good thermal stability. The nanomicrospheres also exhibit favorable expansion and viscoelastic properties. Upon the injection of 3wt.% of the PER nanomicrospheres into a non-homogeneous core, the blocking rate (η) reaches 90.32%, while the recovery rate increases by 30.2%. This improvement is attributed to the unique structural design of the nanomicrospheres, allowing them to form a thin film at the three-phase oil–water-rock interface and promoting oil emulsification and stripping. Overall, the PER nanomicrospheres effectively control fluid dynamics within reservoirs, mitigate the loss of oil and gas resources, enhance the economic benefits of oil and gas fields, and thus demonstrate good application prospects.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.