Amit Kumar, Vishal S. Chauhan, Rajeev Kumar, Kamal Prasad
{"title":"Electromagnetic Radiation Characteristics and Mechanical Properties of Cement-Mortar Under Impact Load","authors":"Amit Kumar, Vishal S. Chauhan, Rajeev Kumar, Kamal Prasad","doi":"10.1007/s10921-024-01140-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the changes in electromagnetic radiation (EMR) emissions from cement-mortar subjected to impact throughout its curing process. The generation of EMR signals in hydrated samples is primarily driven by the accelerated motion of charged particles through the pore spaces and the time-dependent variation in dipole moments formed at the electrical double layer. As the hydration (curing) progresses, there is a noticeable decrease in EMR voltage, average EMR energy release rate, and dominant frequency. However, these EMR parameters exhibit an increasing trend with the application of higher mechanical impact energy. It was further observed that as hydration advances, the non-evaporable water content and degree of hydration increase, whereas the evaporable water content decreases. Additionally, EMR voltage recorded after fracture was consistently lower than that measured before fracture across all curing days, indicating that crack formation during repetitive loading suppresses EMR emissions. This suggests that cracks formed in the cement-mortar do not facilitate EMR generation. Moreover, the study found an inverse relationship between impact-dependent mechanical parameters and EMR voltage, highlighting that as mechanical resistance to impact increases, EMR voltage decreases. These findings suggest that the EMR technique has significant potential for non-contact, early-age monitoring of civil structures, providing critical insights into their mechanical integrity and performance under load.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01140-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the changes in electromagnetic radiation (EMR) emissions from cement-mortar subjected to impact throughout its curing process. The generation of EMR signals in hydrated samples is primarily driven by the accelerated motion of charged particles through the pore spaces and the time-dependent variation in dipole moments formed at the electrical double layer. As the hydration (curing) progresses, there is a noticeable decrease in EMR voltage, average EMR energy release rate, and dominant frequency. However, these EMR parameters exhibit an increasing trend with the application of higher mechanical impact energy. It was further observed that as hydration advances, the non-evaporable water content and degree of hydration increase, whereas the evaporable water content decreases. Additionally, EMR voltage recorded after fracture was consistently lower than that measured before fracture across all curing days, indicating that crack formation during repetitive loading suppresses EMR emissions. This suggests that cracks formed in the cement-mortar do not facilitate EMR generation. Moreover, the study found an inverse relationship between impact-dependent mechanical parameters and EMR voltage, highlighting that as mechanical resistance to impact increases, EMR voltage decreases. These findings suggest that the EMR technique has significant potential for non-contact, early-age monitoring of civil structures, providing critical insights into their mechanical integrity and performance under load.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.